Author: Ang, Z.T.
Paper Title Page
MOPO092 A 3-gap Booster Cavity to Match Ion Source Potential to RFQ Acceptance 196
MOOP01   use link to see paper's listing under its alternate paper code  
 
  • R.E. Laxdal, Z.T. Ang, T. Au, S. Kiy, S.D. Rädel, O. Shelbaya, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  The ISAC RFQ can accelerate ions with A/Q ration from 1 to 30 and requires an input energy of 2.04keV/u. The harsh environment of the ISAC on-line ISOL target facility makes it difficult to meet the energy for the heaviest masses. For these cases we have designed and installed a short three gap device that accelerates the beams produced at source potential to match the required energy for RFQ acceptance. The booster cavity operates at 11.7MHz, the RF frequency of the pre-buncher. The device can also be used as a second buncher to augment the acceptance in the RFQ or to improve the acceptance of higher space charge beams. The device will be described and the results of beam measurements will be given.  
slides icon Slides MOPO092 [7.627 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO092  
About • paper received ※ 14 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO014 TRIUMF ISAC LINAC Developments and Upgrades 355
 
  • Z.T. Ang, T. Au, Y. Bylinskii, K. Fong, J.J. Keir, D. Lang, R.E. Laxdal, R. Leewe, B.S. Waraich, Z.Y. Yao, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  TRIUMF ISAC accelerator complex is in consists of ISAC-I room temperature linac and ISAC-II superconducting linac structure. ISAC-I linac has seventeen RF systems in operation for about twenty years, and ISAC-II linac has forty superconducting QWR RF cavities in operation for more than ten years. A small ISAC booster 3-gap structure at 11.78 MHz located in upstream of RFQ has been designed and installed for energy matching to RFQ. A sliding mode extremum seeking control for LLRF control was developed and implemented in operation. Six of DTL systems have been working in the control mode. Two of them had been commissioning and in operation one and half year reliably. RFQ, two more DTL system, HEBT rebuncher and DSB buncher system will be upgraded in the sliding mode control soon. Twenty ISAC-II SBC superconducting cavity RF power amplifiers were upgraded from YV-229 triode tube amplifier into solid state amplifier(SSA). The prototype and four SSAs have been commissioned in 2017 and in operation successfully. The rest of 16 SSA have been tested in RF lab and installed for operation at the mid of this year.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO014  
About • paper received ※ 04 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)