Author: Arias, T.
Paper Title Page
TUPO055 Next Generation Nb3Sn SRF Cavities for Linear Accelerators 462
 
  • R.D. Porter, D.L. Hall, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T. Arias, P. Cueva, D.A. Muller, N. Sitaraman
    Cornell University, Ithaca, New York, USA
 
  Niobium-3 Tin (Nb3Sn) is a very promising alternative material for SRF accelerator cavities. The material can achieve higher quality factors, higher temperature operation and potentially higher accelerating gradients (~ 96 MV/m) compared to conventional niobium. This material is formed by vaporizing Sn in a high temperature vacuum furnace and letting the Sn absorb into a Nb substrate to form a 2-3 um Nb3Sn layer. Current Nb3Sn cavities produced at Cornell achieve Q ~ 1010 at 4.2 K and 17 MV/m. Here we present a summary of the current performance of Nb3Sn cavities at Cornell and recent progress in improving the accelerating gradient.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO055  
About • paper received ※ 20 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)