Author: Aryshev, A.
Paper Title Page
Observation of Resonant Coherent Diffraction Radiation from a Multi-bunch Electron Beam Passing Through an Optical Cavity  
  • Y. Honda, A. Aryshev, R. Kato, T. Miyajima, T. Obina, M. Shimada, R. Takai, T. Uchiyama, N. Yamamoto
    KEK, Ibaraki, Japan
  • T. Hotei
    Sokendai, Ibaraki, Japan
  Funding: This work was supported by JSPS KAKENHI Grant Number 16H05991.
Energy Recovery Linac can realize a linac-type beam at a high current. An ERL test accelerator, cERL, has been constructed in KEK. Utilizing these features of the ERL beam, low emittance, short bunch, and high repetition rate, we have been developing a unique terahertz radiation source of resonant coherent diffraction radiation. An optical resonant cavity consists of two concave mirrors with a beam hole at the center was installed in the return-loop of cERL. When the multi-bunch electron beam passes through the cavity, it radiates coherent diffraction radiation in the cavity. If the round-trip time of the cavity precisely matches the beam repetition, the radiation of the bunches are stacked coherently and stimulates the energy conversion process from the beam to the radiation. Measuring the terahertz radiation power while scanning the cavity length, we observed a sharp resonance peak showing the realization of the stimulated emission. The cavity was carefully designed to tune the carrier-envelope-offset to be zero. It allows to excite wide-band longitudinal modes simultaneously, and realize a mode-locked terahertz pulse.
slides icon Slides TU1P03 [1.740 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)