Author: Bahrami, M.
Paper Title Page
MOPO070 Construction of the Side-coupled Standing-wave e-Linac 151
 
  • S. Zarei
    Nuclear Science and Technology Research, InstituteRadiation Application School, Tehran, Iran
  • F. Abbasi
    Shahid Beheshti University, Tehran, Iran
  • M. Bahrami, M. Lamehi
    IPM, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
 
  Due to Iran’s growing need for accelerators in various applications, NSTRI electron linear accelerator project has been defined for medical and inspection applications. This accelerator is a 6 MeV side-coupled standing-wave that operate is π /2 mode in the frequency of 2998.5 MHz. In this paper the construction and measurement results of the tube of this accelerator are presented. The prototype tube was constructed from aluminum and was clamped with bolts. By using a network analyzer, electric and magnetic probes and a side-coupled cavity tuning method and a bead-pull measurement technique, RF measurements were carried out. The resonant frequency and quality factor have been achieved 2998.5 MHz and 7940 respectively .
low-energy accelerator, construction of linac, standing-wave linac
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO070  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO119 A Diagnostics Box for the Linear Accelerator of Institute for Research in Fundamental Science (IPM) 581
 
  • S. Sanaye Hajari, M. Bahrami, H. Behnamian, S. Kasaei, H. Shaker
    IPM, Tehran, Iran
  • S. Ahmadiannamin
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
 
  The IPM linac is an 8 MeV (up gradable to 11 MeV) electron linear accelerator under development at Institute for Research in Fundamental Sciences, Tehran, Iran. The design and construction of the linac is nearly finished and it is in the commissioning stage. The commissioning is planned in several phase of different energy ranging from 50 keV to 8 MeV. At each phase appropriate diagnostics is required in order to investigate the linac performance. A diagnostics box including a scintillator view screen, a dipole magnet, and a focusing solenoid is designed to diagnose the beam longitudinal and transverse parameters in wide range of energy. These parameters are the beam transverse profile, size, position, emittance and the energy spectrum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO119  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)