Author: Eremeev, G.V.
Paper Title Page
MOPO019 Study on Cleaning of Copper Plated Bellows for LCLS-II 71
  • L. Zhao, E. Daly, G.K. Davis, G.V. Eremeev, A.V. Reilly, A-M. Valente-Feliciano, K.M. Wilson
    JLab, Newport News, Virginia, USA
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts DE-AC05-06OR23177 and DE-AC02-76SF00515 for the LCLS-II Project.
Inter-cavity copper plated bellows are part of the LCLS-II cryomodule beamline components. Since the bellows are close to superconducting radio frequency (SRF) cavities during accelerator operation, it is desirable that these bellows have similar cleanliness as SRF cavi-ties. Studies have been done to help evaluate bellows interior cleanliness after the standard bellows cleaning procedure at Jefferson Lab.
poster icon Poster MOPO019 [1.326 MB]  
DOI • reference for this paper ※  
About • paper received ※ 28 August 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPO076 An Innovative Nb3Sn Film Approach and Its Potential for SRF Applications 513
  • E.Z. Barzi, D. Turrioni, C. Ciaccia
    Fermilab, Batavia, Illinois, USA
  • G.V. Eremeev, R.L. Geng, R.A. Rimmer, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
  • S. Falletta
    Politecnico di Torino, Torino, Italy
  • H. Hayano, T. Saeki
    KEK, Ibaraki, Japan
  • H. Ito
    Sokendai, Ibaraki, Japan
  • A. Kikuchi
    NIMS, Tsukuba, Ibaraki, Japan
  Funding: Work supported by U.S. DOE contract No. DE-AC02-07CH11359
A novel electro-chemical technique to produce Nb3Sn films on Nb substrates was developed and optimized at Fermilab. The Nb3Sn phase is obtained in a two-electrode cell, by electrodeposition from aqueous solutions of Sn layers and Cu intermediate layers onto Nb substrates. Subsequent thermal treatments in inert atmosphere are realized at a maximum temperature of 700°C to obtain the Nb3Sn superconducting phase. Several superconduct-ing Nb3Sn films were obtained on Nb substrates by study-ing and optimizing most parameters of the electro-plating process. Samples were characterized at Fermilab, NIMS, KEK and JLAB, including EPMA analyses, DC and in-ductive tests of critical temperature Tc0, and lower critical field Hc1(4.2 K) by SQUID. In parallel to sample devel-opment and fabrication at FNAL, at JLAB and KEK effort was put into etching and electro-polishing techniques adequate to remove the Cu and bronze phases from the samples’ outer surface. This is necessary prior to meas-urements at JLAB of the surface impedance of flat sam-ples in a setup that make use of an RF host cavity.
DOI • reference for this paper ※  
About • paper received ※ 21 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)