Author: Ge, M.
Paper Title Page
TUPO057 Low-temperature Baking and Infusion Studies for High-gradient ILC SRF Cavities 466
 
  • M. Ge, P.N. Koufalis, G. Kulina, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Low-temperature infusion has become a hot-topic in SRF researches recently. Past results show that low-temperature infusion can produce high quality factor at medium accelerating fields. Also, 75°C baking recently has been shown to improve accelerating gradients of SRF cavities. Hence these treatments are very promising for reducing cost of the ILC. In this work, we present latest results of low temperature infusion and baking, showing that these treatments can improve SRF cavities performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO057  
About • paper received ※ 19 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO058 Cool Down Studies for the LCLS-II Project 470
 
  • M. Ge, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Gonnella
    SLAC, Menlo Park, California, USA
  • J. Sears
    Cornell University, Ithaca, New York, USA
 
  The quality factor of the nitrogen-doped SRF cavities for the LCLS-II project are strongly impacted by cool down speed. A sufficiently fast cool down speed can produce large thermal gradient across a cavity and sufficiently expel magnetic flux when the cavity wall passes from the normal-conducting to the superconducting state. However, instrumentation in LCLS-II production cryomodules has been kept at a minimum, and additional information during the cool down of the modules is therefore desirable. In this work, we study if and how RF data can be used during cavity cool-down to determine the transition speeds of the individual cavities in the LCLS-II linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO058  
About • paper received ※ 19 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO059 Latest Results of Salt Based Bipolar Electro-polishing R&D at Cornell 473
 
  • M. Ge, F. Furuta, T. Gruber, J.J. Kaufman, M. Liepe, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T.D. Hall, R. Radhakrishnan, S.T. Snyder, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
 
  Acid free electropolishing would be safer to use and friendlier to the environment. A collaboration, sup-ported by the DOE SBIR Phase-II program, between Faraday Technology Inc. and Cornell University focused on salt-based bipolar electropolishing (BEP). In this paper, we present the latest salt-based BEP results. The superconducting performance of a single-cell 1.3GHz cavity has been carefully analyzed, showing that salt-based BEP is promising, but still has large room for improvement.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO059  
About • paper received ※ 19 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1A02
CBETA, a 4-turn ERL Based on SRF Linacs and Permanent Magnet Beam Transport  
 
  • G.H. Hoffstaetter, N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, F. Furuta, R.E. Gallagher, M. Ge, C.M. Gulliford, B.K. Heltsley, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • D. Jusic
    Cornell University, Ithaca, New York, USA
 
  A collaboration between Cornell University and Brookhaven National Laboratory has designed a novel accelerator and is constructing it at Cornell: CBETA, the Cornell-BNL ERL Test Accelerator. The ERL technology that has been prototyped at Cornell for many years is being used, including a DC electron source and an SRF injector Linac with world-record current and normalized brightness in a bunch train, a high-current linac cryomodule optimized for ERLs, a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams. BNL has designed a multi-turn ERL and a recirculating linac for eRHIC; in both designs the beam is transported many times around the 4 km long RHIC tunnel. The number of transport lines is minimized by using two arcs with Fixed Field Alternating Gradient design. This technique will be tested in CBETA, which has a single return for the 4-beam energies with strongly-focusing permanent magnets of Halbach type. The high-brightness beam with 150 MeV and up to 40 mA will have applications for Electron Ion Colliders (EICs), e.g. for their electron cooling, and for applications in industry, in nuclear physics, and in X-ray science.  
slides icon Slides WE1A02 [6.367 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)