Author: Grespan, F.
Paper Title Page
MOPO089 Design Details of the European Spallation Source Drift Tube LINAC 190
 
  • P. Mereu, M. Mezzano, C. Mingioni, M. Nenni
    INFN-Torino, Torino, Italy
  • G. Cibinetto
    INFN-Ferrara, Ferrara, Italy
  • F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2MHz with a duty cycle of 4% (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5mA pulse peak current from 3.62 to 90 MeV. This paper gives a detailed overview of the ESS-DTL current mechanical design, and the related driving criteria. It presents also an outlook of the main aspects of the assembly and installation, with related equipments, toolings and procedures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO089  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO124 Details of the Manufacturing Processes of the ESS-DTL Components 260
 
  • P. Mereu, F. Borotto Dalla Vecchia, C. Mingioni, M. Nenni, R. Panero
    INFN-Torino, Torino, Italy
  • A. Battistello, P. Bottin, D. Conventi, L. Ferrari, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • A.G. Colombo
    INFN- Sez. di Padova, Padova, Italy
 
  The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2MHz with a duty cycle of 4% (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5mA pulse peak current from 3.62 to 90 MeV. This paper presents the details of the manufacturing processes with quality control reports of the components of the DTL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO124  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2A04 Progress Report on LIPAC 308
 
  • M. Sugimoto, T. Akagi, T. Ebisawa, Y. Hirata, R. Ichimiya, A. Kasugai, K. Kondo, S. Maebara, K. Sakamoto, T. Shinya
    QST, Aomori, Japan
  • P. Abbon, N. Bazin, B. Bolzon, N. Chauvin, S. Chel, R. Gobin, J. Marroncle, B. Renard
    CEA/IRFU, Gif-sur-Yvette, France
  • L. Antoniazzi, L. Bellan, D. Bortolato, M. Comunian, E. Fagotti, F. Grespan, M. Montis, A. Palmieri, A. Pisent, F. Scantamburlo
    INFN/LNL, Legnaro (PD), Italy
  • P.-Y. Beauvais, H. Dzitko, D. Gex, R. Heidinger, A. Jokinen, I. Moya, G. Phillips
    Fusion for Energy, Garching, Germany
  • P. Cara
    IFMIF/EVEDA, Rokkasho, Japan
  • D. Gavela, D. Jiménez-Rey, I. Kirpitchev, J. Mollá, P. Méndez, I. Podadera, D. Regidor, R. Varela, M. Weber
    CIEMAT, Madrid, Spain
  • J. Knaster
    F4E, Barcelona, Spain
  • G. Pruneri
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy
 
  International Fusion Materials Irradiation Facility (IFMIF) is the neutron source for simulating fusion reactor environment using two 40 MeV/125 mA CW D+ beams. LIPAc facility is under construction in Rokkasho for validating 9 MeV/125 mA CW linac technology as a prototype of the IFMIF accelerator. Commissioning of 5 MeV CW RFQ is underway after the completion of installation of RFQ, MEBT, diagnostic plate. low power beam dump, RF power system and their auxiliaries. As the first step, high power RF conditioning is planned to complete in early 2018 and beam commissioning will start with stepwise approach at the same time. The status of LIPAc construction for preparing 9 MeV acceleration and results of RFQ beam commissioning are presented.  
slides icon Slides TU2A04 [9.651 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TU2A04  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO043 ESS Normal Conducting Linac Status and Plans 781
 
  • E. Sargsyan, H. Danared, F. Hellström, G. Hulla, Ø. Midttun, J.S. Schmidt
    ESS, Lund, Sweden
  • I. Bustinduy, N. Garmendia, J.L. Muñoz
    ESS Bilbao, Zamudio, Spain
  • L. Celona, S. Gammino, L. Neri
    INFN/LNS, Catania, Italy
  • A.C. Chauveau, B. Pottin
    CEA/IRFU, Gif-sur-Yvette, France
  • F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • P. Mereu
    INFN-Torino, Torino, Italy
 
  The European Spallation Source (ESS) uses a linear accelerator to deliver the high intensity proton beam to the target station for producing intense beams of neutrons. The average beam power is 5 MW with a peak beam power at the target of 125 MW. The normal conducting linear accelerator (linac) operating at 352.21 MHz accelerates a proton beam of 62.5 mA from 0.075 to 90 MeV. It consists of an ion source, Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ), Medium Energy Beam Transport (MEBT), and Drift Tube Linac (DTL). The design, construction and testing of those structures is done by European partner labs as an in-kind contribution to the ESS project. This paper presents the status and plans for the ESS normal conducting linac.
E.Sargsyan for the ESS NC Linac collaboration team
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO043  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO045 Tuning Esperience on the ESS DTL Cold Model 784
 
  • F. Grespan, A. Baldo, P. Bottin, G.S. Mauro, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • P. Mereu, M. Mezzano
    INFN-Torino, Torino, Italy
 
  An aluminum model of the ESS DTL tank 2 has been delivered to INFN-LNL in december 2017. The tank is 7.1 m long, equipped with movable tuners and movable post couplers. The purpose of this DTL model is to verify the RF design choices (in particular on the first 2 tanks where the Post coupler distribution is irregular) as well as implement and debug algorithms and procedure for stabilization and tuning. The preparatory simulation work and the results of measurements campaign are here presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO045  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO062 IFMIF/EVEDA RFQ Preliminary Beam Characterization 834
 
  • E. Fagotti, L. Antoniazzi, L. Bellan, M. Comunian, F. Grespan, M. Montis, A. Palmieri, A. Pisent, F. Scantamburlo
    INFN/LNL, Legnaro (PD), Italy
  • T. Akagi, K. Kondo, K. Sakamoto, T. Shinya, M. Sugimoto
    QST, Aomori, Japan
  • P. Cara
    IFMIF/EVEDA, Rokkasho, Japan
  • H. Dzitko, I.M. Moya
    F4E, Germany
  • R. Heidinger, A. Marqueta
    Fusion for Energy, Garching, Germany
  • I. Podadera
    CIEMAT, Madrid, Spain
 
  The IFMIF/EVEDA RFQ is the longest and powerful operated. Therefore, it requires a careful characterization from several aspects: beam dynamics, RF, mechanics, installation and commissioning. Due to the very large power handling, the preliminary beam operation was decided to be performed with a low proton beam current at one half of the voltage needed for deuteron accelera-tion, i.e. from 8 mA to 30 mA at 2.5 MeV in pulsed mode, with respect to the nominal 130-mA deuteron beam at 5 MeV in CW. In this framework, it will be presented the characterization of the RFQ in terms of simulation and measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO062  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)