Author: Ke, Y.J.
Paper Title Page
THPO100 Development of a 1.5 GHz High-power CW Magnetron for SRF Accelerator 908
 
  • L. Wenliang
    College of Engineering and Applied Sciences for Nanjing University, Nanjing, People’s Republic of China
  • S. An, Y.J. Ke, S. Lingbin, Z. Pengjiao, L. Youchun, L. Zhao, B.Z. Zhou
    PLAI, Nanjing, People’s Republic of China
  • J.Z. Li, L.P. Zhang, Hou, R. Rui
    ADS, Jiangsu Province, People’s Republic of China
 
  An 1.5 GHz, 13.5 kW CW high-power magnetron for a superconducting RF accelerator has been developed by Andesun Technology Group Co., Ltd. with Nanjing Sanle Electronic Information Industry Group Co., Ltd., in order to replace the klystron, that could reduce the power source cost to about one-third. The cavity, output power antenna and coupling door-nob have been optimized by using CST Studio. Testing results have shown that the resonance frequency and output power have met the requirements, and the efficiency of the magnetron is higher that 78.45%.  
poster icon Poster THPO100 [0.574 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO100  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO104 Development of 150.4MHz Continuous Wave Solid-state Amplifier 917
 
  • L. Zhao
    Nanjing University of Aeronautics and Astronautics, Jiangning, People’s Republic of China
  • S. An, Y.J. Ke, Z. Pengjiao, L. Wenliang, B.Z. Zhou
    PLAI, Nanjing, People’s Republic of China
 
  A 150.4MHz to 155.4MHz, 300W continuous wave solid-state amplifier as an accelerator power source has been developed by us. In order to increase the lifetime of MOSFET and meet the requirements of every parameters, Drain voltage and quiescent current is set at a better point with a well-designed heat dissipation structure, we make the solid state amplifier stable in performance. Taking the microwave leakage into account, the chassis structure is optimized and designed, and the microwave absorption device is adopted to make the structure compact, protect other parts not affected by the microwave leakage. After the assembly is completed, the working parameters meet the design requirements very well. The MOSFET flange temperature and output parameters meet the design requirements.  
poster icon Poster THPO104 [1.405 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO104  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)