Author: Keller, T.F.
Paper Title Page
TH2A01 Nitrogen Infusion R&D for CW Operation at DESY 652
  • M. Wenskat, A.D. Dangwal Pandey, B. Foster, T.F. Keller, D. Reschke, J. Schaffran, S. Sievers, N. Walker, H. Weise
    DESY, Hamburg, Germany
  • C. Bate, G.D.L. Semione, A. Stierle
    University of Hamburg, Hamburg, Germany
  • B. Foster
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • B. Foster
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  The European XFEL cw upgrade requires cavities with reduced surface resistance (high Q-values) for high duty-cycle while maintaining high accelerating gradient for short-pulse operation. To improve on European XFEL performance, a recently discovered treatment is investigated: The so called Nitrogen-infusion. The recent test results of the cavity based R&D and the progress of the relevant infrastructure is presented. The aim of this approach is to establish a stable, reproducible recipe and to identify all key parameters for this process. In parallel, advanced surface analyses, such as SEM/EDX, TEM, XPS, XRR, GIXRD and TOF-SIMS, of samples after in-situ treatment, cut-outs of cavities and samples treated together with cavities are done. The aim of this approach is to understand the underlying processes of the material evolution, resulting in the improved performance. Results of these analyses, their implications for the cavity R&D, and next steps are presented.  
slides icon Slides TH2A01 [4.597 MB]  
DOI • reference for this paper ※  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)