Author: Montesinos, E.
Paper Title Page
PERLE, a Powerful ERL for Experiments at Orsay  
  • W. Kaabi, I. Chaikovska, A. Stocchi, C. Vallerand
    LAL, Orsay, France
  • D. Angal-Kalinin, J.W. McKenzie, B.L. Militsyn, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Arduini, O.S. Brüning, R. Calaga, L. Dassa, F. Gerigk, B.J. Holzer, E. Jensen, A. Milanese, E. Montesinos, D. Pellegrini, D. Schulte, P.A. Thonet, A. Valloni
    CERN, Geneva, Switzerland
  • S.A. Bogacz, D. Douglas, F.E. Hannon, A. Hutton, F. Marhauser, R.A. Rimmer, Y. Roblin, C. Tennant
    JLab, Newport News, Virginia, USA
  • S. Bousson, D. Longuevergne, G. Olivier, G. Olry
    IPN, Orsay, France
  • B. Hounsell, M. Klein, U.K. Klein, P. Kostka, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • E.B. Levichev, Yu.A. Pupkov
    BINP SB RAS, Novosibirsk, Russia
  PERLE is a proposed multi-pass Energy Recovery Linac, based on SRF technology, to be built at Orsay, France, in a collaborative effort between local laboratories LAL/IN2P3, IPNO/IN2P3 and international partners such as JLAB, STFC, Liverpool University, BINP and CERN. A part from experimental program, PERLE will serve as testbed to study a broad range of accelerator phenomena and to validate technical choices for the LHeC, which aims at electron proton collisions using the existing LHC machine together with an added electron ERL. In its final configuration, PERLE provides a 500 MeV electron beam using high current (20 mA) acceleration during three passes through 801.6 MHz cavities. This talk outlines the technological choices, the lattice design and describes the potential contributions of the interested partners.  
slides icon Slides WE1A01 [3.525 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPO058 RF Design of a High-frequency RFQ Linac for PIXE Analysis 822
SPWR016   use link to see paper's listing under its alternate paper code  
THOP04   use link to see paper's listing under its alternate paper code  
  • H.W. Pommerenke, A. Bilton, A. Grudiev, A.M. Lombardi, S.J. Mathot, E. Montesinos, M.A. Timmins, M. Vretenar
    CERN, Geneva, Switzerland
  • H.W. Pommerenke, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  Funding: This work has been sponsored by the Wolfgang Gentner Program of the German Federal Ministry of Education and Research (grant no. 05E12CHA).
Protons with an energy of few MeV are commonly used for Ion Beam Analysis of materials, in particular with the Proton Induced X-ray Emission technique (PIXE). Because of its non-damaging character, PIXE is used in a variety of fields, in particular for the diagnosis of cultural heritage artwork. A compact accelerator based on a high frequency RFQ (Radio Frequency Quadrupole) linac has been designed and is being built at CERN. The length of the RFQ is only one meter and it allows the acceleration of a proton beam up to an energy of 2 MeV. The complete system is conceived to be transportable, allowing PIXE analysis almost anywhere. This paper covers the RF design of the compact RFQ operating at 750 MHz. We present general accelerator parameters and the current state of the RF design, which includes RFQ geometry and coupler design, thermal simulation and first particle tracking results.
slides icon Slides THPO058 [2.404 MB]  
poster icon Poster THPO058 [2.192 MB]  
DOI • reference for this paper ※  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)