Author: Mueller, J.M.     [Müller, J.M.]
Paper Title Page
MOPO121 Large-Scale Optical Synchronization System of the European XFEL 253
  • J.M. Müller, M. Felber, T. Kozak, T. Lamb, H. Schlarb, S. Schulz, C. Sydlo, M. Titberidze, F. Zummack
    DESY, Hamburg, Germany
  At the European XFEL, a facility-wide optical synchronization system providing a femtosecond-stable timing reference at more than 40 end-stations had been developed and installed. The system is based on an ultra-stable, low-noise laser oscillator, whose signals are distributed via actively length-stabilized optical fibers to the different locations across the accelerator and experimental areas. There, it is used to locally re-synchronize radio frequency signals, to precisely measure the arrival time of the electron beam for fast beam-based feedbacks, and to phase-lock optical laser systems for electron bunch generation, beam diagnostics and user pump-probe experiments with femtosecond temporal resolution. In this paper, we present the system’s architecture and discuss design choices to realize an extensible, large-scale synchronization infrastructure for accelerators that meets reliability, maintainability as well as the performance requirements. Furthermore, the latest performance result of an all-optically synchronized laser oscillator is shown.  
DOI • reference for this paper ※  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)