Author: Oikawa, H.
Paper Title Page
TUPO030 Precise Evaluation of Characteristic of the Multi-layer Thin-film Superconductor Consisting of NbN and Insulator on Pure Nb Substrate 391
TUOP03   use link to see paper's listing under its alternate paper code  
 
  • R. Katayama, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • C.Z. Antoine
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Four
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • H. Hayano, T. Kubo, T. Saeki
    KEK, Ibaraki, Japan
  • H. Ito
    Sokendai, Ibaraki, Japan
  • R. Ito, T. Nagata
    ULVAC, Inc, Chiba, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  In recent years, it has been pointed out that the maximum accelerating gradient of a superconducting RF cavity can be pushed up by coating the inner surface of the cavity with a multilayer thin-film structure that consists of alternating insulating and superconducting layers. In this structure, the principal parameter that limits the performance of the cavity is the critical magnetic field or effective Hc1 at which vortices start penetrating into the superconductor layer, and it is predicted to depend on the combination of the film thickness. We made samples that have NbN/SiO2 thin-film structure on pure Nb substrate with several thicknesses of NbN film deposited using DC magnetron sputtering method. Here, we report the measurement results of effective Hc1 of the NbN sample with a thickness of 200 nm by using the third-harmonic voltage method. In addition, we report the preliminary results to evaluate the dependence of the effective Hc1 on the thickness of the NbN film in the range 50 nm-200 nm.  
slides icon Slides TUPO030 [0.305 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO030  
About • paper received ※ 18 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO050 Construction of Thin-film Coating System Toward the Realization of Superconducting Multilayered Structure 445
 
  • R. Ito, T. Nagata
    ULVAC, Inc, Chiba, Japan
  • H. Hayano, T. Kubo, T. Saeki
    KEK, Ibaraki, Japan
  • H. Ito
    Sokendai, Ibaraki, Japan
  • Y. Iwashita, R. Katayama
    Kyoto ICR, Uji, Kyoto, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  Although S-I-S (superconductor-insulator-superconductor) multilayered structure is expected to increase the maximum acceleration gradient of SRF cavities, in order for it to function in reality, it is necessary to develop a coating processing that can realize high purity and quality superconducting thin-films. We launched the co-sputtering system to create superconducting alloy thin-films such as Nb3Sn and to research how the characteristics of them change depending on the coating conditions. The deposition rate of two elements was optimized by adjusting each input power, so we successfully obtained an alloy thin-film having appropriate composition ratio. In addition, we developed another experimental equipment for coating on the inner surface of the 3GHz TESLA type small cavities. A cylindrical shape Nb in which some permanent magnets are inserted was adopted as the sputtering target. Glow discharge of the target was confirmed, and the inner-sputtering test was conducted. This presentation reports the specifications of the two sputtering apparatuses and the results of the coating test.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO050  
About • paper received ※ 18 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO053 Fabrication of Nb Mushroom Shaped Cavity for Evaluation of Multi-layer Thin-film Superconductor 454
 
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
  • K. Enami, H. Hayano, H. Inoue
    KEK, Ibaraki, Japan
  • T. Higashiguchi
    Center for Optical Research and Education, Utsunomiya University, Utsunomiya, Japan
 
  The accelerating gradient of the Nb superconducting RF cavity seems to reach the limit due to the RF critical magnetic field of the Nb material. To obtain more higher gradient, there has been proposed a method of increasing an RF critical magnetic field of the cavity inner surface by coating of multi-layer thin-film superconductor. It is needed to demonstrate improvement RF critical magnetic field of the RF cavity coated with multi-layer thin-film superconductor. To optimize thin-film superconductor, sample tests are required. A cavity for sample test is necessary to produce a strong RF magnetic field parallel to the surface of the sample for evaluating RF critical magnetic field. For such a cavity, we designed a mushroom shaped cavity made of Nb which is operated in cryogenic temperature. Input and pick up antenna coupler are also designed electrically and mechanically. The connection design of sample plate and cavity bottom plate in superconducting state is also designed. The Nb mushroom shaped cavity is under fabrication. Fabrication method and status are reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO053  
About • paper received ※ 17 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO066 Lower Critical Field Measurement of Thin Film Superconductor 484
 
  • H. Ito
    Sokendai, Ibaraki, Japan
  • C.Z. Antoine
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Four
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • H. Hayano, T. Kubo, T. Saeki
    KEK, Ibaraki, Japan
  • R. Ito, T. Nagata
    ULVAC, Inc, Chiba, Japan
  • Y. Iwashita, R. Katayama, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  Funding: The work is supported by Japan Society for the Promotion of Science Grant-in-Aid for Young Scientist (A) No.17H04839.
Superconducting thin film is the promising technology to increase the performance of SRF cavities. The lower critical field Hc1, which is one of the important physical parameters characterizing a superconducting material, will be enhanced by coating Nb with thin film superconductor such as NbN. To investigate the Hc1, we developed the Hc1 measurement system using the third harmonic response of applied AC magnetic field. The measurement system consists of helium cryostat with two of GM refrigerators, sample Cu stage, solenoid coil Cu mount, solenoid coil, temperature sensors, and liquid helium level meter. AC magnetic field is produced by a coil which is driven by function generator and power amplifier at around 1 kHz. In order to control the temperature of the sample, we installed heaters and thermal anchors which could be moved by the motor. By this temperature control the sample state can be easily transferred from Meissner state to mixed state. So that the measurement is repeated for various applied magnetic field, and the transition curve can be made. In this report, measurement result of the bulk Nb sample and NbN-SiO2 multilayer thin film sample will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO066  
About • paper received ※ 19 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO068 Vertical Electropolishing of 1.3 GHz Niobium Nine-cell SRF Cavity: Bulk Removal and RF Performance 491
 
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
  • H. Ito
    Sokendai, Ibaraki, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  Vertical electropolishing (VEP) technique have been successfully developed for 1.3 GHz niobium (Nb) single cell cavity to achieve a smooth surface with uniform removal and better RF performance as achieved after horizontal EP (HEP) process. VEP parameters for 1.3 GHz Nb nine-cell cavities are being studied using a nine-cell coupon cavity and our unique Ninja cathode. The investigated VEP parameters heretofore were applied on a 1.3 GHz Tesla shape nine-cell superconducting RF cavity for bulk removal of 100 µm followed by fine removal of 20 and 10 µm. The interior surface was found to be smooth and shiny after the VEP process. Our recently developed dual flow technique, in which the EP acid is flown separately in the Ninja cathode housing and cavity, yielded lower asymmetry in removal along the cavity length. The cavity was tested in a vertical cryostat after the final VEP process. The cavity achieved 28.3 MV/m at Q0 value of 6.7x109. The cavity performance was almost the same as in the baseline vertical test performed after the HEP process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO068  
About • paper received ※ 13 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)