Author: Ovchinnikova, L.
Paper Title Page
MOPO061 Beam Parameters Measurement of C-band 6 MeV Linear Electron Accelerator 133
 
  • D.S. Yurov, A.S. Alimov, A.N. Ermakov, V.V. Khankin, N.V. Shvedunov, V.I. Shvedunov
    SINP MSU, Moscow, Russia
  • L. Ovchinnikova
    Laboratory of Electron Accelerators MSU, Ltd, Physics Department, Lomonosov Moscow State University, Moscow, Russia
  • A.S. Simonov
    LEA MSU, Moscow, Russia
 
  The new linear electron accelerator with beam energy varied in the range of 2-6 MeV with dual-energy option has been designed by Laboratory of Electron Accelerators MSU Ltd. Linac is based on compact high gradient stand-ing wave C-band accelerating structure fed by multi-beam klystron and is used in the cargo inspection and cancer therapy complexes. In the report, we present the results of electron beam parameters measurements at special stand.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO061  
About • paper received ※ 10 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO059 Choke-Type Resonator for a Compact Storage Ring 126
 
  • L. Ovchinnikova, V.I. Shvedunov
    SINP MSU, Moscow, Russia
  • L. Ovchinnikova, V.I. Shvedunov
    LEA MSU, Moscow, Russia
  • A. Ryabov
    IHEP, Moscow Region, Russia
 
  We present the results of calculations and measurements the electrodynamic characteristics of the operating and high order modes of a choke-type resonator, intended for a 35-50 MeV storage ring, which is part of the Thomson X-ray generator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO059  
About • paper received ※ 09 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO060 Linacs for Industry, Cargo Inspection and Medicine Designed by Moscow University 130
 
  • A.N. Ermakov, A.S. Alimov, A.N. Kamanin, V.V. Khankin, L. Ovchinnikova, N.I. Pakhomov, N.V. Shvedunov, V.I. Shvedunov, D.S. Yurov
    SINP MSU, Moscow, Russia
  • A.S. Alimov, A.N. Ermakov, V.V. Khankin, L. Ovchinnikova, N.I. Pakhomov, N.V. Shvedunov, V.I. Shvedunov, A.S. Simonov
    LEA MSU, Moscow, Russia
  • I.V. Shvedunov
    Federal State Unitary Enterprise, Laboratory of Electron Accelerators MSU, Ltd, Moscow, Russia
 
  Funding: Work supported in part by Ministry of Education and Science of Russia Grant # RFMEFI58217X0011
The report presents the results of development of applied linear electron accelerators with an energy of up to 10 MeV, performed by the Laboratory of Electron Accelerators MSU. We describe linear accelerators for mobile, stationary and train cargo inspection systems with interlaced energies and pulse repetition rate up to 2 kHz, accelerators for radiography, a sterilization accelerator with beam parameters that are adjustable over a wide range, and an accelerator for a radiotherapy complex.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO060  
About • paper received ※ 10 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO097 Design of C-band Electron Linear Accelerator for a Complex of Radiation Therapy 550
 
  • L. Ovchinnikova, V.I. Shvedunov
    SINP MSU, Moscow, Russia
  • L. Ovchinnikova, V.I. Shvedunov
    LEA MSU, Moscow, Russia
 
  Funding: This material is based upon work supported by the Ministry of Education and Science of the Russian Federation, under Grant Agreement No. 14.582.21.0011, Grant Agreement Unique ID RFMEFI58217X0011.
The report presents the design of the linear electron accelerator for a complex of radiation therapy. The three-electrode electron gun and C-band accelerating structure are optimised to produce a therapeutic electron beam with an energy of 6 MeV and a dose rate of 10 Gy/min and a beam with an energy of 2.5 MeV to obtain a portal image. The beam size at the bremsstrahlung target in both modes does not exceed 2 mm. The total length of the accelerating system with the electron gun does not exceed 330 mm. The accelerating structure is fed by RF power from a multibeam klystron at a frequency of 5,712 MHz with a maximum pulsed power of 3.5 MW.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO097  
About • paper received ※ 10 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)