Author: Pan, F.
Paper Title Page
TUPO036 Vertical Test Results of Plasma In-situ Cleaning on Low Beta HWR Cavity 408
TUOP06   use link to see paper's listing under its alternate paper code  
 
  • A.D. Wu, H. Guo, Y. He, C.F. Hu, S.C. Huang, C.L. Li, Y.M. Li, X. Liu, F. Pan, Y.K. Song, P.R. Xiong, L. Yang, W.M. Yue, C. Zhang, S.H. Zhang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Field emission occurred in SRF cavity is the major limitation to operate at high gradient with stability. The plasma in-situ cleaning for the low beta HWR cavity was carried out to remove the hydrocarbons contaminants on the inner cavity surface. And the vertical test results indicated that the field emission effect was relieved with the increasing of the quench point and emission set-on point. Thus, oxygen active plasma processing can be an effective method to solve the field emission issues for the low beta HWR cavity.  
slides icon Slides TUPO036 [1.281 MB]  
poster icon Poster TUPO036 [0.672 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO036  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO038 Several Experimental Phenomena of Sn Nucleation on Nb Surface Observed at IMP 412
TUPO037   use link to see paper's listing under its alternate paper code  
 
  • Z.Q. Yang, Y. He, F. Pan
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Nucleation process is an important step that affects the quality of Nb3Sn films coated by vapor diffusion method. A uniform distribution of nucleation centers is essential to the uniformity of Nb3Sn films. In this paper we report several experimental phenomena on the Sn nucleation on Nb surface. Better nucleation in the downstream of the pumping direction was observed. Influence of SnCl2 partial pressure inhomogeneity was studied. Samples with higher SnCl2 partial pressure have denser nucleation, which means homogeneous SnCl2 pressure is a critical factor to the uniform nucleation. Less-nuclear zones, mainly distributed at cracks, grain boundaries and even some whole grain surfaces, were found on the surfaces of all samples. The less-nuclear zones may result in the low tin regions of the Nb3Sn cavities. The specific solution to the less-nuclear problem was proposed. These studies help to better understanding of the mechanism underlying the nucleation process and will be useful foundation for the follow-up Nb3Sn/Nb project at IMP.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO038  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)