Author: Pei, G.
Paper Title Page
THPO001 Design Study on CEPC Positron Damping Ring System 672
 
  • D. Wang, Y.L. Chi, J. Gao, D.J. Gong, C. Meng, G. Pei, J.R. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The primary purpose of CEPC damping ring is to reduce the transverse phase spaces of positron beam to suitably small value at the beginning of linac and hence reduce the beam loss in the booster. Before damping ring, an energy spread compression structure is designed to match the RF acceptance of damping ring. A longitudinal bunch length control is also necessary to meet the energy spread requirement in the linac by a bunch compressor system after the damping ring. Both designs for damping ring and energy/bunch compressors are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO001  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO102 Design Studies of Output Window for CEPC Klystron 911
 
  • Z.J. Lu, Y.L. Chi, S. Fukuda, G. Pei, S. Pei, S.C. Wang, O. Xiao, U. N. Zaib, Z.S. Zhou
    IHEP, Beijing, People’s Republic of China
  • S. Fukuda
    KEK, Ibaraki, Japan
 
  A high power and high efficiency klystron of the 650MHz, 800kW CW klystron for the Circular Electron Positron Collider (CEPC) is designed and developed at IHEP. This paper presents the design and simulation for the high power coaxial window for it. Plan of the hot test (high power testing before installing to the klystron) are also described. Simulation software of CST, ANSYS and Multipac 2.1 are used for design of window microwave structure, thermal analysis and multipacting effects. We obtained the good simulation results successively; the coaxial window S-parameter analysis, has revealed a low reflection at the operating frequency of 650 MHz. The thermal simulation shows a good temperature distribution under the cw 800kW propagation; maximum temperature has been found to be 33 °C at ceramic with water cooling in the inner and outer conductor. The multipacting at the window is possible source of the failure and it is shown that multipacting has less chance to be happened on the surface of ceramic.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO102  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)