Author: Plawski, T. E.
Paper Title Page
MOPO115 CEBAF Photo Gun RF System 236
 
  • T. E. Plawski, R. Bachimanchi, M. Diaz, H. Higgins, C. Hovater, C.I. Mounts, D.J. Seidman
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by JSA, LLC under U.S. DOE Contract DE-AC05- 06OR23177 and DE-SC0005264.
During the CEBAF 12 GeV Upgrade at Jefferson Lab, a fourth experimental hall, ’D’, was added to the existing three halls. To produce four beams and deliver them to all halls concurrently requires new frequencies and a new timing pattern of the electron bunches. Since a photo-gun is used to produce electron bunches, the gun’s drive laser pulses need to be synchronized with the required bunch rate frequencies of 499 MHz or 249.5 MHz. To meet these new operational requirements, the new LLRF system has been proposed. Very specific requirements (dual frequency operation) on one side and the simple RF drive mode operation on the other imply the use of a commercial off-the-shelf digital platform rather than a system typical for RF cavity field control. We have chosen the Texas Instruments FPGA board along with a high-speed 8-Channel, 14-Bit board, and a 4-Channel, 16-Bit board. The DAC board includes the clock generator for clocking ADCs, DACs and the FPGA. The complete Gun Laser LLRF system has been designed, built, and recently commissioned in the CEBAF Injector. This paper will detail the design and report on commissioning activities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO115  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO004 Pulsed Operation of CEBAF for JLEIC Injection 682
 
  • J. Guo, J.M. Grames, R. Kazimi, F. Lin, T. E. Plawski, R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
JLab Electron Ion Collider (JLEIC) is planning to use the recently upgraded 12 GeV CEBAF 1497 MHz SRF CW recirculating linac as a full-energy injector for the electron collider ring. The JLEIC electron injection requires 3-4µs long bunch trains with a 20-400ms spacing in between, resulting in uneven beam loading for the CW CEBAF. With the high beam current in JLEIC collider rings, the low duty factor of injection also requires to a very high pulsed beam current from CEBAF, exacerbating the transient beam loading issue. In this paper, we will present CEBAFs detailed pulsed operation scheme for JLEIC injection, as well as some experimental results at CEBAF.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO004  
About • paper received ※ 20 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)