Author: Tang, C.-X.
Paper Title Page
THPO035 Tuning and Low Power Test of the 325 MHz IH-DTL at Tsinghua University 759
  • R. Tang, C.T. Du, X. Guan, Y. Lei, P.F. Ma, K.D. Man, C.-X. Tang, X.W. Wang, Q.Z. Xing, W.B. Ye, H.Y. Zhang, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • J. Li
    NUCTECH, Beijing, People’s Republic of China
  An interdigital H-mode drift tube linac (IH-DTL), which accelerates proton beam from 3 MeV to 7 MeV has been designed and assembled at Tsinghua University. There are 8 plungers in the 1 m tank and one co-axial coupler is used to feed the power. The frequency is tuned to 325 MHz. The field distribution is measured by the bead perturbation method. Finally, the gap voltage error has been tuned to be smaller than ±3.0%, which satisfies the design requirement. The Q factor of the tank is 7000 while the power dissipation is 244 kW. Details of the low power test is presented.  
poster icon Poster THPO035 [1.268 MB]  
DOI • reference for this paper ※  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPO116 Space-Charge Dominated Photoemission in High Gradient Photocathode RF Guns 941
THOP11   use link to see paper's listing under its alternate paper code  
  • Y. Chen, P. Boonpornprasert, J.D. Good, M. Groß, H. Huck, I.I. Isaev, D.K. Kalantaryan, C. Koschitzki, M. Krasilnikov, O. Lishilin, G. Loisch, D. Melkumyan, R. Niemczyk, A. Oppelt, H.J. Qian, Y. Renier, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • H. Chen, Y. C. Du, W.-H. Huang, C.-X. Tang, Q.L. Tian, L.X. Yan
    TUB, Beijing, People’s Republic of China
  • H. De Gersem, E. Gjonaj
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M. Dohlus
    DESY, Hamburg, Germany
  • S. A. Schmid
    Institut Theorie Elektromagnetischer Felder, TU Darmstadt, Darmstadt, Germany
  The cathode emission physics plays a crucial role in the overall beam dynamics in the gun. Interplays between intricate emission mechanisms in the cathode vicinity strongly influence the cathode quantum efficiency (QE) and the intrinsic emittance. The presence of strong space-charge effects in high gradient RF guns further complicates the emission process. A proper modeling of photoemission and a careful treatment of the space-charge contribution is thus of great necessity to understanding the formation of the beam slice emittance. In this article, emission measurements are carried out using the L-band cesium-telluride photocathode RF gun at the Photo Injector Test Facility at DESY in Zeuthen (PITZ) and the S-band copper photocathode RF gun at Tsinghua University. Following the Dowell model a simple so-called space-charge iteration approach is developed and used to determine the QE through temporal and spatial-dependent electromagnetic fields. An impact of the space-charge cooling on the thermal emittance is presented. Measurement data are shown and discussed in comparisons to preliminary simulation results.  
slides icon Slides THPO116 [6.249 MB]  
poster icon Poster THPO116 [3.157 MB]  
DOI • reference for this paper ※  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)