Author: Wang, S.
Paper Title Page
MO1A01 CSNS Front End and Linac Commissioning 1
 
  • S. Fu, H.C. Liu, H.F. Ouyang, S. Wang
    IHEP, Beijing, People’s Republic of China
  • J. Li, J. Peng
    CSNS, Guangdong Province, People’s Republic of China
 
  The China Spallation Neutron Source(CSNS) accelera-tor systems is designed to deliver a 1.6GeV, 100kW proton beam to a solid metal target for neutron scattering research. The accelerator consists of a front end, an 80MeV DTL linac, and a 1.6GeV Rapid Cycling Syn-chrotron (RCS). In August 2017 the first 1.6GeV proton beam hit on the tungsten target and production neutrons were monitored. This paper will report the major steps and results of the machine commissioning and beam commissioning of the CSNS front end and linac. In the first section, a brief introduction of the CSNS accelerator design and present status will be presented. Then, we will share our commissioning experience in the front end and the DTL linac in the following sections.  
slides icon Slides MO1A01 [9.123 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MO1A01  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO114 Beam Dynamics Studies for the CSNS DTL Due to a Quadrupole Fault 573
 
  • J. Peng, M.T. Li, Y.D. Liu, X.H. Lu, X.B. Luo
    CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, S. Fu, L. Huang, M.Y. Huang, Y. Li, Z.P. Li, S. Wang, S.Y. Xu, Y. Yuan
    IHEP, Beijing, People’s Republic of China
 
  The China Spallation Neutron Source(CSNS) accelera-tor systems is designed to deliver a 1.6GeV, 100kW pro-ton beam to a solid metal target for neutron scattering research. It consists of a 50keV H Ion Source, a 3MeV Radio Frequency Quadrupole (RFQ), an 80MeV Drift Tube Linac (DTL), and a 1.6GeV Rapid-cycling Synchro-tron (RCS). The DTL consists of four tanks. In 2017, three of four tanks have been commissioned successfully, and beam has been accelerated to 61MeV with nearly 100% transmission. However, in July 2017, one quadrupole contained in the drift tube was found fault, the beam transmission decreased to 80%. A new lattice has been designed and the 100% transmission has recovered. In January 2018, the last tank of the DTL has been commissioned and accelerated the H beam to the design energy of 80MeV for the first time. The commissioning progress and the measurement results before and after lattice adjustment will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO114  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO032 CSNS Linac Beam Commissioning Tools and Experience 750
 
  • Y. Li, Z.P. Li, S. Wang
    IHEP, Beijing, People’s Republic of China
  • J. Peng
    CSNS, Guangdong Province, People’s Republic of China
 
  The China Spallation Neutron Source (CSNS) successfully accelerated the H beam to 80 MeV in January 2018, marking a key progress in the beam commissioning. One of the keys to success is the development and use of software tools. XAL, a Java-based software infrastructure originally developed by SNS was applied for CSNS beam commissioning. We have developed and transplanted many applications based on XAL. Some of the applications for the Linac are described ,and some experiences are shared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO032  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)