Author: Wu, J.X.
Paper Title Page
TUPO003 Development of CW Heavy Ion Linac at IMP 326
TUOP08   use link to see paper's listing under its alternate paper code  
 
  • X. Yin, H. Du, Y. He, Q.Y. Kong, X.N. Li, Z.S. Li, L.Z. Ma, J. Meng, C. Qian, L.T. Sun, K.D. Wang, J.X. Wu, J.W. Xia, W.J. Xie, Z. Xu, Y.Q. Yang, Q.G. Yao, Y.J. Yuan, W. Zhang, X.Z. Zhang, Y. Zhang, H.W. Zhao, Z.Z. Zhou
    IMP/CAS, Lanzhou, People’s Republic of China
  • J.E. Chen, S.L. Gao, G. Liu, Y.R. Lu, Z. Wang, X.Q. Yan, K. Zhu
    PKU, Beijing, People’s Republic of China
 
  A new heavy ion linac as the injector for the Separated Sector Cyclotron (SSC), named SSC-Linac[1], is being under constructed at the national laboratory Heavy Ion Research Facility in Lanzhou (HIRFL). The SSC-Linac mainly consists of a 4-rod RFQ and three IH-DTL cavities which can accelerate ion of A⁄q≤7from 3.73 keV/u to 1.025 MeV/u. Both of themoperating at 53.667MHz had been developed. In the commissioning, ions weresuccessfully accelerated to 0.295MeV/u by IH-DTL1. The beam commissioningof the IH-DTL2 which can accelerate the ion to 0.586MeV/u will come soon. In this paper, the recent R&D progress of the SSC-Linac including the development of key components and the beam commissioning results arepresented.  
slides icon Slides TUPO003 [7.335 MB]  
poster icon Poster TUPO003 [0.810 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO003  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO054 Recent Progress of a CW 4-rod RFQ for the SSC-LINAC 814
 
  • Z.S. Li, Y. Cong, H. Du, Y. He, L. Jing, Q.Y. Kong, X.N. Li, J. Meng, G.D. Shen, K.D. Wang, Z.J. Wang, W. Wei, J.X. Wu, J.W. Xia, H.M. Xie, W.J. Xie, Z. Xu, J.C. Yang, Y.Q. Yang, X. Yin, Y.J. Yuan, Y. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
  • Y.R. Lu
    PKU, Beijing, People’s Republic of China
 
  The SSC-LINAC is under design and construction as a linear injector for the Separated-Sector Cyclotron (SSC) of the Heavy Ion Research Facility at Lanzhou (HIRFL). The continuous-wave (CW) 4-rod radio-frequency quad-rupole (RFQ) of the SSC-LINAC has important progress in past years. In the autumn of 2016, the cavity has been operated with 35 kW on CW mode in automatic RF con-trolled mode during RF power commissioning, which is needed to accelerate 238U34+ beams. The beam transmis-sion efficiency, transverse emittance and energy spread has been obtained in beam commissioning. In this paper, the results of experiments will be presented and discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO054  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO086 Beam Loss and Average Beam Current Measurements Using a CWCT 882
 
  • F. Stulle, H. Bayle, J.F. Bergoz, T. Delaviere, L. Dupuy
    BERGOZ Instrumentation, Saint Genis Pouilly, France
  • P. Forck, M. Witthaus
    GSI, Darmstadt, Germany
  • D. Vandeplassche
    SCK•CEN, Mol, Belgium
  • J.X. Wu
    IMP/CAS, Lanzhou, People’s Republic of China
 
  The CWCT is a novel instrument adapted to an accurate average current determination of bunched CW beams or macro pulses. By combining a high-droop current transformer with novel electronics for signal analysis, an output signal bandwidth of DC to about 500kHz and a current resolution down to the micro-ampere level are achieved. Beam current fluctuations are followed within microseconds, permitting fast detection of beam loss. These characteristics render the CWCT an ideal instrument for HPPAs, for example ADS linacs, and other proton or ion accelerators. We present the CWCT principle and the CWCT performance achieved in beam experiments at UNILAC, GSI.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO086  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1A04
Beam Diagnostics for CW and Pulsed Proton Superconducting Linac  
 
  • J.X. Wu
    IMP/CAS, Lanzhou, People’s Republic of China
  • J.S. Cao
    IHEP, Beijing, People’s Republic of China
 
  This talk will review beam diagnostics for CW and pulsed proton superconducting linac. Emphasis should be on those beam diagnostics developed for 10-25 MeV CW proton linac built by IMP and IHEP. The talk should present technical design and measurement results with beams by those beam diagnostic probes, and technical challenges and lessons learned can be also presented.  
slides icon Slides FR1A04 [10.921 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)