Author: Yang, Y.
Paper Title Page
TUPO005 Initial Beam Commissioning of LEAF at IMP 332
 
  • Y. Yang, W.P. Dou, X. Fang, Y.H. Guo, H. Jia, L. Jing, X.J. Liu, L. Lu, W. Lu, W. Ma, L.T. Sun, L.P. Sun, W. Wei, H.W. Zhao, Y.H. Zhai
    IMP/CAS, Lanzhou, People’s Republic of China
 
  A Low Energy intense-highly-charged ion Accelerator Facility (LEAF), which mainly includes an ECR ion source, LEBT and an 81.25 MHz RFQ, was designed to produce and accelerate heavy ions, from helium to uranium with A/Q between 2 and 7, to the energy of 0.5 MeV/u. The typical beam intensity is designed up to 2 emA CW for the uranium beam. The facility has been successfully commissioned with He+ (A/Q=4) and N2+ (A/Q=7) beams and accelerated the beams in the CW regime to the designed energy of 0.5 MeV/u. Beam properties and transmission efficiencies were measured, indicating a good consistency with simulated data. After having briefly recalled the project scope and parameters, this paper describes the beam commissioning strategy and detailed commissioning results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO005  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO052 High Power Test of the LEAF-RFQ 808
 
  • L. Lu, Y. He, W. Ma, L.B. Shi, L.T. Sun, L.P. Sun, L. Yang, Y. Yang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  High power heavy ion drivers require a CW low-frequency accelerator for initial acceleration. A CW four-vane radio frequency quadrupole (RFQ) accelerator is designed to accelerate heavy ions A/q up to 7 from 14 keV/u to 500 keV/u, as a new injector for the Low Energy Accelerator Facility (LEAF) at Institute of Modern Physics (IMP). The measurements of low power test were reported previously. In this paper, the results of high power test of the RFQ, including the test of the acceleration systems and beam profiles, will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO052  
About • paper received ※ 07 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)