Author: Yoshida, M.
Paper Title Page
MOPO007 The Developing of the Beam Injection Section with Laser Source and S-Band Electron RF Gun for SuperKEKB Project 50
 
  • X. Zhou, Y. Ogawa, M. Yoshida, R. Zhang
    KEK, Ibaraki, Japan
 
  For the beam injection at Linac Accelerator of the SuperKEKB project, the s-band RF gun needs to provide low-emittance high-charge electron bunches. An ultrashort high energy solid laser driving a cathode in a quasi-travelling side-coupled RF gun were developed. A Yb fiber and Nd:YAG hybrid laser amplify system is start with 114.24 MHz oscillator that synchronized from accelerator. Two beam lines with the 25Hz, ~20ps, and sub-mJ Ultraviolet pulses were generated to RF gun. Ir5Ce has long lifetime and quantum efficiency QE that was employed to cathode. The RF gun has two side coupled cavities on same axis can realize quasi-traveling wave, which is suitable for the high charge and low emittance beam generation. Now, great progress has been made to make the RF gun function well. For the Phase II commissioning, required charge and emittance were achieved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO007  
About • paper received ※ 05 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO008 The RF Gun Adopting the Dielectric Assist Accelerating Structure 54
 
  • S. Mori, D. Satoh, M. Yoshida
    KEK, Ibaraki, Japan
 
  We apply the dielectric assist accelerating (DAA) structure to the RF gun, which is a candidate for a high average current and high brightness electron source. The DAA structure consists of ultralow-loss dielectric cylinders and disks which are periodically arranged in a metallic enclosure. Due to the high quality factor and the high shunt impedance of the DAA cavity, the RF gun adopting the DAA cavity can be a high-duty electron beam source at room temperature. We provide design work for RF gun adopting the DAA structure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO008  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO085 Prototype of an Inter-digital H-mode Drift-tube Linac for Muon Linac 180
 
  • Y. Nakazawa, H. Iinuma
    Ibaraki University, Ibaraki, Japan
  • K. Hasegawa, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • N. Hayashizaki
    RLNR, Tokyo, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • Y. Iwata
    NIRS, Chiba-shi, Japan
  • N. Kawamura, T. Mibe, M. Otani, T. Yamazaki, M. Yoshida
    KEK, Ibaraki, Japan
  • R. Kitamura, H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Sue
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
 
  An inter-digital H-mode (IH) drift-tube linac (DTL) is developed for a low velocity part in a muon linac at the J-PARC E34 experiment. It will accelerate muons from v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. In order to achieve higher acceleration efficiency and make cost lower, an alternative phase focusing (APF) scheme is adopted. A prototype with 6 cells of 0.45 m length was manufactured. The prototype accelerates muons from v/c = 0.08 to 0.15 stage. We conducted frequency measurement and bead-pull measurement as a low-power measurement, in order to evaluate the prototype product. In this paper, the results of the low-power measurement for prototype cavity will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO085  
About • paper received ※ 10 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1A06 Pulse-to-pulse Beam Modulation for 4 Storage Rings with 64 Pulsed Magnets 609
 
  • Y. Enomoto, K. Furukawa, T. Kamitani, F. Miyahara, T. Natsui, M. Satoh, K. Yokoyama, M. Yoshida
    KEK, Ibaraki, Japan
  • H.S. Saotome
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
  • S. Ushimoto
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
 
  The KEK injector linac has delivered electrons and positrons for particle physics and photon science experiments for more than 30 years. It is planned to inject electron and positron beams with energies from 2.5 GeV to 7 GeV pulse-by-pulse at 50 Hz into the dual ring SuperKEKB collider and two light source storage rings. As the beam quality requirement from SuperKEKB is demanding, the beam orbit and optics conditions have to be maintained precisely. To that end 64 newly designed pulsed magnets were installed. Quadrupole magnets with the inductance of 1 mH are driven by power supplies with pulses up to 330 A and 0.5 ms, which recover the energy stored in coils up to 65%. Orbit corrector magnets with the inductance of 3 mH are driven with bipolar pulsed power supplies up to 10 A. Those power supplies are controlled under the event-based synchronized controls and monitored pulse-by-pulse, and are confirmed to have the stability over weeks within 0.1%. The details of the design and the operational performance will be reported.  
slides icon Slides WE1A06 [6.694 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-WE1A06  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)