Author: Zhang, J.R.
Paper Title Page
THPO001 Design Study on CEPC Positron Damping Ring System 672
 
  • D. Wang, Y.L. Chi, J. Gao, D.J. Gong, C. Meng, G. Pei, J.R. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The primary purpose of CEPC damping ring is to reduce the transverse phase spaces of positron beam to suitably small value at the beginning of linac and hence reduce the beam loss in the booster. Before damping ring, an energy spread compression structure is designed to match the RF acceptance of damping ring. A longitudinal bunch length control is also necessary to meet the energy spread requirement in the linac by a bunch compressor system after the damping ring. Both designs for damping ring and energy/bunch compressors are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO001  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO113 Design of 4 Ampere S-Band Linac Using Slotted Iris Structure for Hom Damping 934
 
  • J. Pang, S. Chen, X. He
    CAEP/IFP, Mainyang, Sichuan, People’s Republic of China
  • S. Pei, H. Shi, J.R. Zhang
    IHEP, Beijing, People’s Republic of China
 
  An S-band LINAC with the operating frequency of 2856 MHz and beam current of 4 A was designed for flash X-ray radiography for hydrodynamic test. The optimization of the parameters of the LINAC was processed to obtain the minimum beam radius and the maximum energy efficiency. For the purpose of reducing the beam orbits offset at the exit of LINAC, a slotted iris accelerating structure would be employed to suppress the transverse Higher Order Modes (HOMs) by cutting four radial slots in the iris to couple the HOMs to SiC loads. In this paper, we present the design of the LINAC and the results of beam dynamic analysis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO113  
About • paper received ※ 10 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)