Author: Zheng, S.X.
Paper Title Page
THPO022 Development Progress of the H+/H Linear Accelerators at Tsinghua University 732
THOP06   use link to see paper's listing under its alternate paper code  
 
  • Q.Z. Xing, C.B. Bi, C. Cheng, C.T. Du, T.B. Du, X. Guan, Q.K. Guo, Y. Lei, P.F. Ma, S. Shuai, R. Tang, X.W. Wang, X.D. Xudong, H.Y. Zhang, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • W.Q. Guan, Y. He, J. Li
    NUCTECH, Beijing, People’s Republic of China
  • W.L. Liu, B.C. Wang, Z.M. Wang, Y. Yang, C. Zhao
    NINT, Shannxi, People’s Republic of China
 
  We present, in this paper, the development progress of the 13MeV proton linac for the Compact Pulsed Hadron Source (CPHS), and the 7MeV H linac injector for the synchrotron of the Xi’an 200MeV Proton Application Facility (XiPAF).  
slides icon Slides THPO022 [4.421 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO022  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO033 The Development of Permanent Magnet Quadrupoles for Xipaf DTL 753
 
  • B.C. Wang, M.T. Qiu, Z.M. Wang, C.Y. Wei
    NINT, Shannxi, People’s Republic of China
  • C.T. Du, Q.K. Guo, X.W. Wang, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People’s Republic of China
 
  Permanent magnet quadrupoles (PMQs) are developed for the DTL of Xi’an 200 MeV Proton Application Facility (XiPAF). In this paper, we describe the fabrication and measurements for the Halbach-type PMQs. The main procedure of the PMQ manufacture is presented. And the magnetic measurements of PMQs are carried out with the help of vibrating wire, Hall probe and rotating coil respectively. The results show the PMQs are able to meet the requirements of XiPAF DTL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO033  
About • paper received ※ 10 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO034 Experimental Study of Tuning Method on a Model Alvarez DTL Cavity for CPHS Project 756
 
  • Y. Lei, X. Guan, R. Tang, X.W. Wang, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People’s Republic of China
 
  This article is devoted to the experimental study of tun-ing method for an Alvarez-type drift tube linac (DTL) of the Compact Pulse Hadron Source (CPHS) project at Tsinghua University. The biperiodic structure based on the post couplers are introduced to overcome the instability of the Alvarez DTL tank which is used to operate in 0 (or 2π) mode. The experimental method and results are pre-sented, and the tuning scheme for the formal CPHS DTL is summarized from the tuning experiment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO034  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO035 Tuning and Low Power Test of the 325 MHz IH-DTL at Tsinghua University 759
 
  • R. Tang, C.T. Du, X. Guan, Y. Lei, P.F. Ma, K.D. Man, C.-X. Tang, X.W. Wang, Q.Z. Xing, W.B. Ye, H.Y. Zhang, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • J. Li
    NUCTECH, Beijing, People’s Republic of China
 
  An interdigital H-mode drift tube linac (IH-DTL), which accelerates proton beam from 3 MeV to 7 MeV has been designed and assembled at Tsinghua University. There are 8 plungers in the 1 m tank and one co-axial coupler is used to feed the power. The frequency is tuned to 325 MHz. The field distribution is measured by the bead perturbation method. Finally, the gap voltage error has been tuned to be smaller than ±3.0%, which satisfies the design requirement. The Q factor of the tank is 7000 while the power dissipation is 244 kW. Details of the low power test is presented.  
poster icon Poster THPO035 [1.268 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO035  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO036 Error Study of CPHS DTL after Assembly 763
SPWR014   use link to see paper's listing under its alternate paper code  
 
  • P.F. Ma, C.T. Du, X. Guan, Q.K. Guo, Y. Lei, R. Tang, X.W. Wang, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • B.C. Wang
    NINT, Shannxi, People’s Republic of China
 
  The Compact Pulsed Hadron Source (CPHS) at Tsinghua University is one multi-purpose pulsed neutron source. The injector of the CPHS is a linac, which mainly consists of a source, a low-energy beam transport line (LEBT), a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The error study of the DTL for CPHS is presented in this paper. The error study can provide the field tolerances in the DTL cavity and the alignment tolerance between the RFQ and DTL.  
poster icon Poster THPO036 [2.645 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO036  
About • paper received ※ 06 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO042 An Optimization Method of the Nose-cone Buncher Cavity 778
 
  • W.L. Liu, P.T. Cong, Z.M. Wang
    NINT, Shannxi, People’s Republic of China
  • H. Jiang, S.X. Zheng
    TUB, Beijing, People’s Republic of China
 
  The nose-cone buncher cavity is widely used on proton accelerators. It’s important to properly optimize the cavity geometry for fine RF performance. Howev-er, currently the optimization is usually carried out manually and the criteria are not objective enough. In this paper, an optimization method using the multi-objective, multi-variable optimization approach is presented. The geometry and RF parameters are con-sidered as the variables and objectives respectively. The goal function is defined as the weighted sum of multiple RF parameters. The multi-variable functions are approximately derived from the single-variable functions based on electromagnetic simulation. And an optimization code is developed accordingly which has been applied to the XiPAF debuncher optimization.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO042  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO064 Tuning of a Four-vane RFQ for Xi’an 200 MeV Proton Application Facility 838
 
  • X.D. Yu, X. Guan, Q.K. Guo, Y. Lei, P.F. Ma, X.W. Wang, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • B.C. Wang, Z.M. Wang, C. Zhao
    NINT, Shannxi, People’s Republic of China
 
  This paper mainly describes the procedures and results of tuning a four-vane Radio Frequency Quadrupole (RFQ) accelerator for the Xi’an 200 MeV Proton Application Facility (XiPAF) project. The 3-meter-long RFQ will accelerate a 50 keV H beam from the ECR source to 3 MeV, and deliver it to the downstream drift tube linac (DTL) with a peak current of 5 mA, pulse length of 10-40 μs and maximum repetition rate of 0.5. The machining, assembly, and RF tuning of the RFQ cavity has been completed successfully. After tuning, the relative error of the operating quadrupole mode field is within ±2.7%, and the dipole mode com-ponent is within ±1.9% of the quadrupole mode. The RFQ now is ready for high-power RF conditioning.  
poster icon Poster THPO064 [1.413 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO064  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO111 The Test of RF Breakdowns of CPHS RFQ 931
 
  • W.B. Ye, C. Cheng, X. Guan, J. Shi, X.W. Wang, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • M.C. Wang
    NINT, Shannxi, People’s Republic of China
 
  The high accelerating gradient is significant for a compact linear accelerator, and RF breakdowns is a limitation for the high gradient. This work aims to research RF breakdowns of a 325MHz proton Radio Frequency Quadrupole (RFQ) accelerator of the Compact Pulsed Hadron Source(CPHS). The breakdown rate (BDR) of the RFQ has been measured. Breakdown waveforms have been recorded, which have been used for counting breakdown time distribution and analyzing the location of RF breakdowns.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO111  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)