Author: Ziskind, G.
Paper Title Page
MOPO093 A Study of a Cooling Configuration for an OFHC Copper Rebuncher 200
 
  • O. Mazor, M. Bukai, D. Nusbaum, J. Rodnizki
    Soreq NRC, Yavne, Israel
  • E. Dyunin
    Ariel University, Ariel, Israel
  • G. Ziskind
    Ben-Gurion University in the Negev, Beer Sheva, Israel
 
  Funding: Pazy Fund (Israel Atomic Energy commission) https://pazy.org.il
A four gap OFHC copper rebuncher is developed at SNRC as a research study and a risk reduction for the MEBT of SARAF Phase II proton/ deuteron linac. The rebuncher is designed to bunch a 5 mA CW beam at 176 MHz. The required cavity voltage according to beam dynamics evaluation is 150 kV with a beam aperture diameter of 40 mm at a beam energy of 1.3 MeV/u with a Q value of 8000. Considering utilizing this cavity for enhancing the beam energy, the cooling configuration is explored for a cavity voltage of 300 kV, consuming 20 kW dissipated power, at a peak electric field of 16 MV/m, equivalent to the Kilpatrick limit. The electro magnetic study conducted with the CST RF simulation package was reproduced at ANSYS HFSS. The simulated dissipated power along the rebuncher for 20 kW forward power injected through the coupler port with the HFSS driven model were assigned to the ANSYS Fluent model to explore the resulted temperature map. Several evolved cooling configurations were studied, including cooling of the drift tubes. In this configuration the temperature rise along the cavity is in the range of 30 K. A detailed design of the four gap rebuncher is following this study.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO093  
About • paper received ※ 03 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)