Electron Accelerators and Applications
Other electron accelerators
Paper Title Page
TUPO001 About the Limits for the Accelerated Beam Current in the LUE-200 Linac of the IREN Facility 320
 
  • A.P. Sumbaev
    JINR, Dubna, Moscow Region, Russia
  • A.M. Barnyakov, A.E. Levichev
    BINP SB RAS, Novosibirsk, Russia
 
  The beam current loading of the accelerating fields is discussed for the linear accelerator LUE-200 of IREN facility. LUE-200 electron Linac consits of two disk loaded travelling wave accelerating structure with the operating frequency of 2856 MHz and power compression SLED-type system. The limits by the accelerated beam current are defined for different pulse durations of the beam current and RF power. The calculated results are discussed and compared with the measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO001  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO002 Electron Gun for 100 MeV / 100 kW Linear Accelerator of Electrons as the Driver of Nuclear Subcritical Assembly Neutron Source 323
SPWR008   use link to see paper's listing under its alternate paper code  
 
  • M. Moisieienko, O. Bezditko, A. Mytsykov, A.Y. Zelinsky
    NSC/KIPT, Kharkov, Ukraine
 
  100 MeV / 100 kW linear electron accelerator of The "neutron source" nuclear subcritical assembly uses the 120 KW triode electron gun as the primary source of electrons. The gun is designed, manufactured and tested at IHEP, Beijing, China. At present, the gun is installed, tested. The maximum impulse current of the gun equal to 2 A. Under design operation, the impulse current of the gun equal to 0.55 A.The report describes the construction of a 120 kV triode electron gun, the results of testing and test operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO002  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO020 Microphonics Investigation of ARIEL e-Linac Cryomodules 370
 
  • Y. Ma, K. Fong, M. Keikha, J.J. Keir, D. Kishi, S.R. Koscielniak, D. Lang, R.E. Laxdal, R.R. Nagimov, Z.Y. Yao, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
  • L. Lilje
    DESY, Hamburg, Germany
 
  Now the stage of the 30MeV portion of ARIEL (The Advanced Rare Isotope Laboratory) e-Linac is under commissioning which includes an injector cryomodule (ICM) and the 1st accelerator cryomodule (ACM1) with two cavities configuration. In this paper, the progress of the microphonics investigation and suppression of ICM and ACM1 is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO020  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO016 Investigation of 2D PBG Waveguides for THz Driven Acceleration 714
SPWR007   use link to see paper's listing under its alternate paper code  
 
  • A. Vint, R. Letizia
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Letizia
    Lancaster University, Lancaster, United Kingdom
 
  Funding: Work supported by the STFC PhD Studentship
Novel accelerating techniques that overcome the limitations of conventional RF technology are receiving significant interest. Moving from RF to the THz frequency range, higher gradient of acceleration of high energy beams can be achieved in miniaturised structures. Moreover, with respect to the optical frequency range, the THz regime allows for larger structures and better beam quality to be obtained. In this paper, we investigate the use of a 2D photonic bandgap (PBG) waveguide for THz driven electron acceleration. In accelerator applications, the properties of PBG waveguides can be exploited to damp higher order modes and offer low-loss dielectric confinement at high frequency. In particular, 2D PBG waveguides offer a good compromise between manufacturability, total photonic bandgap confinement, and ease of parallel illumination. The structure here proposed is optimised for maximum bandgap and single mode operation. Dispersion characteristics of the accelerating mode are studied to achieve the best compromise between high accelerating field and effective accelerating bandwidth, given a ~10% bandwidth of the THz driving pulse.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO016  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO017 Progress of the Novel Three-dimensional Spiral Injection Scheme Test Experiment 717
SPWR009   use link to see paper's listing under its alternate paper code  
 
  • M.R. Rehman
    Sokendai, Ibaraki, Japan
  • K. Furukawa, H. Hisamatsu, T. Mibe, H. Nakayama, S. Ohsawa
    KEK, Ibaraki, Japan
  • H. Iinuma
    Ibaraki University, Hitachi, Ibaraki, Japan
 
  Funding: This work was supported by JSPS KAKENHI Grant Number JP26287055 and JP 23740216.
A new muon g-2/EDM experiment at J-PARC (E34) is under preparation in order to resolve a 3𝜎 discrepancy of muon anomalous magnetic dipole moment between the measurement and the standard model prediction. The E34 experiment will employ a unique three-dimensional spiral injection scheme in order to store the muon beam into a small storage orbit. In order to demonstrate the feasibility of this novel injection scheme, the Spiral Injection Test Experiment (SITE) with the electron beam is under construction at KEK Tsukuba campus. The goals of the SITE are divided into two phases. In the first phase of the SITE, 80 keV DC electron beam was injected and detected as a fluorescent light due to the de- excitation of the nitrogen gas into solenoidal storage magnet. In the second phase of the SITE, the pulsed electron beam, and a pulsed magnetic kicker are developed in order to keep the pulsed beam on the very midplane of the solenoidal storage magnet. This paper describes the achievements of the first phase of SITE and progress towards the second phase.
*H. Iinuma et al., Nuclear Instruments and Methos in Physics Research A, 832, 51-62 (2016).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO017  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO018 Building a 12GHz Traveling Wave Accelerating Structure Brazed Through Irises 721
 
  • V.A. Dolgashev, G.B. Bowden, M. Dal Forno, A.A. Haase
    SLAC, Menlo Park, California, USA
  • A. Grudiev
    CERN, Geneva, Switzerland
  • H. Zha
    TUB, Beijing, People’s Republic of China
 
  Accelerating structures are usually manufactured by precision turning of individual cells combined with precision milling for complex parts such as rf power couplers. These multiple parts are staked and brazed into a complete structure. We consider an alternative approach: precision milling of multiple cells and couplers into metal blocks that comprise halves or quadrants of the complete structure. We successfully produced a 12~GHz Compact Linear Collider (CLIC) main linac accelerating structure prototype using this method. A previous prototype was designed as an open structure with a gap between cell irises. Here we describe a different approach, an accelerating structure which is brazed through irises. It is based on a multi-cell traveling wave structure designed at CERN for PSI, so called "T24 PSI 12 GHz". This brazed-through irises structure was built at SLAC for high power tests at CERN. Here we describe the details of this process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO018  
About • paper received ※ 19 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO021 Research on X Ray Characteristics Produced by Highenergy Picosecond Electron Beam Shooting 729
 
  • X.D. Zhang, X.P. Ouyang, B. Sun, X.J. Tan, X.F. Weng
    NINT, Xi’an, People’s Republic of China
 
  Funding: Supported by National Natural Science Foundation of China(11375142)
The X ray sources based on electron linac can produce X-rays with high energy, concentrated directions, and strong penetrating power, which have been widely applied in various fields. An electronic linear accelerator which has been built at present can provide an electron beam with energy of 120 MeV and pulse width of picosecond. The electron beam shooting at the metal targets can produce ultra-fast pulsed X-rays in the order of picosecond. In this paper, the pulse X ray characteristics are studied through simulating electron beam shooting at four metal targets with different thickness of Au, Ta, U, W and Pb by MCNPX program. The calculation shows that the X-rays can reach about 1010p/pulse and the pulse width can reach about picosecond level, when the pulsed electron beams with energy of 120 MeV ,charge of 0.5nC and pulse width of picosecond shooting at Ta targets. The yield and time width of pulsed X-rays are related to the diameter and thickness of the target.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO021  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)