Keyword: dipole
Paper Title Other Keywords Page
MOPO100 Doubly Stripped Proton Causing Vacuum Leak at Brookhaven 200 MeV H linac Complex proton, linac, rfq, ion-source 214
 
  • D. Raparia, G. Atoian, T. Lehn, V. LoDestro, M. Mapes, A. McNerney, J. Ritter, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  Doubly stripped H in the low energy beam transport are capture 180 degree apart in the RF of RFQ and accelerated to the full energies. These protons are bend in the opposite direction of H after the 200 MeV drift tube linac and caused vacuum leak. A new beam dump for these stripped protons is planned  
poster icon Poster MOPO100 [4.781 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO100  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO125 Steering Magnets with Permanent Magnets permanent-magnet, multipole, operation, sextupole 264
 
  • Y. Iwashita, M. Abe, T. Yako
    Kyoto ICR, Uji, Kyoto, Japan
  • Y. Fuwa
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • N. Terunuma
    KEK, Ibaraki, Japan
 
  Funding: This work was supported by the Collaborative Research Program of Institute for Chemical Research, Kyoto University (grant #2018-10)
Dipole magnet using permanent magnet technology is under investigation for correction magnets in beamline. It can reduce cost of electricity of coil excitation and cooling water pump, thick electric cabling and water piping, power supply, and their maintenance cost. The structure and the field adjustment scheme whith bipolar variable range will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO125  
About • paper received ※ 20 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO033 Cryogenic Test Results of the SPS Prototype RF-dipole Crabbing Cavity with Higher Order Mode Couplers cavity, HOM, luminosity, multipactoring 402
 
  • S.U. De Silva, J.R. Delayen, H. Park
    ODU, Norfolk, Virginia, USA
  • Z. Li
    SLAC, Menlo Park, California, USA
  • H. Park
    JLab, Newport News, Virginia, USA
 
  The rf-dipole crabbing cavity planned for the LHC High Luminosity Upgrade is designed to deliver a transverse kick of 3.34 MV; crabbing the proton beam in the horizontal plane. The proton beams of the LHC machine operating at 7 TeV each sets high impedance thresholds on the crabbing cavity systems. The rf-dipole crabbing cavity is designed with a two higher order mode couplers to suppress those HOMs. The first prototype of the HOM couplers are fabricated at Jefferson Lab. This paper reports the cryogenic test results of the HOM couplers with the SPS prototype rf-dipole cavity.  
slides icon Slides TUPO033 [0.859 MB]  
poster icon Poster TUPO033 [1.838 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO033  
About • paper received ※ 17 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO091 Beam Break Up Instability Analysis for Cavities, Linacs and Energy Recovery Linacs cavity, linac, polarization, focusing 537
 
  • V. Volkov, V.M. Petrov
    BINP SB RAS, Novosibirsk, Russia
 
  This analyze argue that BBU instability both in separate cavities and in Linacs or ERLs is going due to the consequence of fundamental property of dipole modes. ’Head-tail’ bunch instability has also the same nature. New BBU instability testing methods are described and analytically proved in the article.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO091  
About • paper received ※ 14 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO109 Electron Cloud Estimates for the Jefferson Lab EIC electron, sextupole, proton, simulation 563
 
  • K.E. Deitrick, V.S. Morozov, T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
In this work, we present preliminary estimates for electron cloud build-up and saturation for the ion ring of the Jefferson Laboratory Electron-Ion Collider (JLEIC) currently under development. Using the baseline ion ring design, we study the impact of various operational parameters on the behavior of the electron cloud for a 100 GeV proton beam, including estimated tune shifts.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO109  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO119 A Diagnostics Box for the Linear Accelerator of Institute for Research in Fundamental Science (IPM) linac, diagnostics, electron, solenoid 581
 
  • S. Sanaye Hajari, M. Bahrami, H. Behnamian, S. Kasaei, H. Shaker
    IPM, Tehran, Iran
  • S. Ahmadiannamin
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
 
  The IPM linac is an 8 MeV (up gradable to 11 MeV) electron linear accelerator under development at Institute for Research in Fundamental Sciences, Tehran, Iran. The design and construction of the linac is nearly finished and it is in the commissioning stage. The commissioning is planned in several phase of different energy ranging from 50 keV to 8 MeV. At each phase appropriate diagnostics is required in order to investigate the linac performance. A diagnostics box including a scintillator view screen, a dipole magnet, and a focusing solenoid is designed to diagnose the beam longitudinal and transverse parameters in wide range of energy. These parameters are the beam transverse profile, size, position, emittance and the energy spectrum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO119  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO010 Novel Straight Merger for Energy Recovery Linacs cavity, experiment, linac, electron 702
 
  • K.E. Deitrick, A. Hutton
    JLab, Newport News, Virginia, USA
  • A.C. Bartnik, C.M. Gulliford
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S.A. Overstreet
    ODU, Norfolk, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
One of the most critical design considerations for an energy recovery linac (ERL) is how to merge the injected bunch onto the linac axis with minimal beam degradation. All merger designs in established and upcoming machines involve significant bending of the injected beam ’ even using a so-called straight merger bends the injected beam several degrees. We propose a merger which reduces the bending of the injected beam by an order of magnitude. By passing both beams through a septum magnet followed by an rf separator cavity with a superimposed dipole magnetic field, the injected beam bends minimally within the cavity, while the recirculated beam bends to align with the linac axis. Here we describe the concept in detail and present simulation results to demonstrate the advantages of such a design, particularly for magnetized beams or minimal energy separation between the injected and recirculated beams. Measurements from an experiment at CBETA evaluating the beam dynamics of the rf separator are presented and compared with simulation results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO010  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO064 Tuning of a Four-vane RFQ for Xi’an 200 MeV Proton Application Facility rfq, quadrupole, cavity, coupling 838
 
  • X.D. Yu, X. Guan, Q.K. Guo, Y. Lei, P.F. Ma, X.W. Wang, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • B.C. Wang, Z.M. Wang, C. Zhao
    NINT, Shannxi, People’s Republic of China
 
  This paper mainly describes the procedures and results of tuning a four-vane Radio Frequency Quadrupole (RFQ) accelerator for the Xi’an 200 MeV Proton Application Facility (XiPAF) project. The 3-meter-long RFQ will accelerate a 50 keV H beam from the ECR source to 3 MeV, and deliver it to the downstream drift tube linac (DTL) with a peak current of 5 mA, pulse length of 10-40 μs and maximum repetition rate of 0.5. The machining, assembly, and RF tuning of the RFQ cavity has been completed successfully. After tuning, the relative error of the operating quadrupole mode field is within ±2.7%, and the dipole mode com-ponent is within ±1.9% of the quadrupole mode. The RFQ now is ready for high-power RF conditioning.  
poster icon Poster THPO064 [1.413 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO064  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)