Keyword: extraction
Paper Title Other Keywords Page
TUPO120 The Study of the Length and Shape of Beam in a High Power Electron Accelerator electron, radiation, industrial-accelerators, simulation 584
 
  • M. Salehi, F. Abbasi Davani, B.G. Ghasemi
    Shahid Beheshti University, Tehran, Iran
  • F. Ghasemi, A.P. Poursaleh
    NSTRI, Tehran, Iran
 
  The output beam of a high-power linear accelerator, used for industrial purposes, is irradiated on products and scanning them. In order to improve the dosimetry of radiation which products received and to prevent loss of the attacked- beams to the edge of products, the exact evaluation of scanning length is necessary . One of the other challenges of the scanning beam is the lack of uniformity in dosimetry of received radiation . The scanning beam does not collide in parallel to the products, which is also a challenge to accelerator efficiency. To improve dosimetry of received radiation, the use of trajectory correction magnets is suggested. These magnets correct the beams that do not scan in parallel. Also, using the Monte Carlo code, the dosing rate of received radiation to products is simulated and compared in two non-uniform and uniform modes (corrected by trajectory correction magnets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO120  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO127 Activities at the Linac4 Test Stand emittance, rfq, linac, electron 587
 
  • J.-B. Lallement, V. Bencini, S.B. Bertolo, F.D.L. Di Lorenzo, J. Lettry, A.M. Lombardi, C.M. Mastrostefano, D. Noll, M. O’Neil
    CERN, Geneva, Switzerland
 
  Linac4, the new CERN H injector to the Proton Synchrotron Booster, has been commissioned and has delivered a beam intensity and quality calculated to be sufficient to produce the standard beams for LHC and the high intensity beams for ISOLDE when connected. The beam current is nevertheless half of what is foreseen and the problem has been identified at the low energy end, between the extraction and the matching to the RFQ. The Linac4 test stand is being used to address this issue by testing different extraction geometries and different plasma generators. A fast method to access the current in the RFQ acceptance has been put in place. This paper reports the results of the measurements obtained so far.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO127  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO126 Compact H+ ECR Ion Source with Pulse Gas Valve ion-source, plasma, ECR, GUI 955
 
  • Y. Takeuchi, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
 
  We are developing a compact ECR H+ ion source with pulse gas valve. In the case of high current ion linac, the distance between the ion source and the first accelerating tube such as RFQ must be as short as possible to reduce the space charge effect, while operating in a high electric field a good vacuum condition is desirable. Since hydrogen gas always flows out from ion sources if the plasma chamber is filled with the gas, vacuum pumping systems have to evacuate the gas enough before the first accelerating tube. The pulse gas injection system achieved by a fast piezo gas valve can reduce the gas load on the vacuum evacuation system and is suitable for installing the ion source close to the RFQ.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO126  
About • paper received ※ 19 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)