Keyword: FPGA
Paper Title Other Keywords Page
MOPO041 Performance Test Results of Magnet Power Supply controls, interface, power-supply, experiment 118
 
  • K.-H. Park, J.H. Han, S.-H. Jeong, Y.G. Jung, D.E. Kim, M.J. Kim, H.-G. Lee, S.B. Lee, B.G. Oh, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  A high stable magnet power supply (MPS) was developed, which was a bipolar type with 200A of the output current at the 40V of output voltage. The MPS has been implemented by the digital signal processing technology using the DSP, FPGA, ADCs and so on. The output current stability of the MPS showed about 6ppm peak-to-peak in a short term experiment at 200A of its full output current. The long term stability was shown in 15 ppm peak-to-peak for 10 hours at 200A. And the others experimental results about the MPS were shown in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO041  
About • paper received ※ 31 August 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO111 Development of New LLRF System at the J-PARC Linac LLRF, linac, feedback, low-level-rf 233
 
  • K. Futatsukawa, Z. Fang, Y. Fukui
    KEK, Ibaraki, Japan
  • Y. Sato
    Nippon Advanced Technology Co., Ltd., Tokai, Japan
  • S. Shinozaki
    JAEA/J-PARC, Tokai-mura, Japan
 
  In the J-PARC linac, the LLRF system with the digital feedback (DFB) and the digital feedforward (DFF) was adopted for satisfying requirement of amplitude and phase stabilities. It has been operated without serious problems. However, it has been used since the beginning of the J-PARC and more than ten years have already passed since the development. The increase of the failure frequency for this system is expected. Additionally, it is difficult to maintain it for some discontinued boards of DFB and DFF and the older developing environment of software. Therefore, we are starting to study the new LLRF system of the next generation. In the present, we are exploring several possibilities of a new way and investigating each advantage and disadvantage. The project and the status of the development for the new system in the J-PARC linac LLRF are introduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO111  
About • paper received ※ 22 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO115 CEBAF Photo Gun RF System laser, operation, gun, MMI 236
 
  • T. E. Plawski, R. Bachimanchi, M. Diaz, H. Higgins, C. Hovater, C.I. Mounts, D.J. Seidman
    JLab, Newport News, Virgina, USA
 
  Funding: Authored by JSA, LLC under U.S. DOE Contract DE-AC05- 06OR23177 and DE-SC0005264.
During the CEBAF 12 GeV Upgrade at Jefferson Lab, a fourth experimental hall, ’D’, was added to the existing three halls. To produce four beams and deliver them to all halls concurrently requires new frequencies and a new timing pattern of the electron bunches. Since a photo-gun is used to produce electron bunches, the gun’s drive laser pulses need to be synchronized with the required bunch rate frequencies of 499 MHz or 249.5 MHz. To meet these new operational requirements, the new LLRF system has been proposed. Very specific requirements (dual frequency operation) on one side and the simple RF drive mode operation on the other imply the use of a commercial off-the-shelf digital platform rather than a system typical for RF cavity field control. We have chosen the Texas Instruments FPGA board along with a high-speed 8-Channel, 14-Bit board, and a 4-Channel, 16-Bit board. The DAC board includes the clock generator for clocking ADCs, DACs and the FPGA. The complete Gun Laser LLRF system has been designed, built, and recently commissioned in the CEBAF Injector. This paper will detail the design and report on commissioning activities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO115  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO007 FRIB Fast Machine Protection System: Chopper Monitor System Design controls, machine-protect, high-voltage, power-supply 336
 
  • Z. Li, D. Chabot, S. Cogan, S.M. Lidia, R.C. Webber
    FRIB, East Lansing, USA
 
  Funding: Work supported by Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The Facility for Rare Isotope Beams tunes the beam power from 0 to 400KW by chopping the beam current with a beam chopper in the Low Energy Beam Transport. A chopper monitoring system is employed to verify proper chopper operation to avoid delivery of undesired high-powered beam and to inhibit beam for machine protection purposes. The system monitors the incoming beam gate time structure, the chopper switch high voltage pulses, the chopper electrode charge/discharge currents, and the status of machine protection system. It is designed to switch off the beam within tens of nanoseconds of a detected fault. Chal-lenges include a dynamic beam gate pulse structure with pulse lengths as short as 0.6 µs and high voltage power supply current pulses of ~25 ns. A high speed "integrate and hold circuit with reset", Field Program-mable Gate Array based digital control circuit and high speed ADC circuit were developed to fulfil the re-quired functions. Design approach, simulation, and test results with the beam are the focus of this paper.
 
slides icon Slides TUPO007 [1.082 MB]  
poster icon Poster TUPO007 [1.321 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO007  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)