Keyword: heavy-ion
Paper Title Other Keywords Page
TU2A01 First Acceleration of Heavy Ion Beams with a Superconducting Continuous Wave HIM/GSI CW-linac cavity, linac, acceleration, emittance 297
 
  • W.A. Barth, K. Aulenbacher, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, M. Heilmann, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  First acceleration of heavy ion beams with a superconducting continuous wave HIM/GSI CW-Linac After successful RF-testing of a new superconducting Linac RF-cavity at GSI Helmholtzzentrum für Schwerionenforschung and a short commissioning and ramp up time of some days, this 15-gaps Crossbar H-cavity accelerated first time heavy ion beams with full transmission up to the design beam energy. The design acceleration gain of 3.5 MV inside a length of less than 70 cm has been verified with heavy ion beam of up to 1.5 particle mkA. The measured beam parameters show a nice beam quality. The machine commissioning with beam is a milestone of the R&D work of Helmholtz Institute Mainz and GSI in collaboration with Goethe University Frankfurt in development of the superconducting heavy ion continuous wave linear accelerator CW-Linac.  
slides icon Slides TU2A01 [3.385 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TU2A01  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO011 Upgrade of Heavy Ion Injector I-3 at ITEP acceleration, emittance, laser, ion-source 346
 
  • N.N. Alexeev, P.N. Alekseev, V. Andreev, T. Kulevoy, A.D. Milyachenko, V.I. Nikolaev, Yu.A. Satov, A. Shumshurov, A. Zarubin
    ITEP, Moscow, Russia
 
  Heavy ion injector I-3 represents two-gap 2.5 MHz resonator with accelerating voltage 2x2 MV. It‘s used with laser ion source for acceleration of heavy ions in wide range of charge to mass ratio. As a result of modernization, injector structure will be supplemented by the second two-gap resonator, rf voltage will be increased to 3x4 MV and accelerated beam structure has to be improved by increasing accelerating frequency to 5 MHz. Design features of upgraded linac and peculiarity of beam dynamics for different types of ions are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO011  
About • paper received ※ 03 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO084 Beam Dynamics Simulations for the New Superconducting CW Heavy Ion LINAC at GSI linac, cavity, cryomodule, experiment 525
 
  • M. Schwarz, M. Basten, M. Busch, H. Podlech
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, M. Heilmann, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  Funding: Work supported by BMBF contr. No. 05P15RFRBA, EU Framework Programme H2020 662186 (MYRTE) and HIC for FAIR
For future experiments with heavy ions near the coulomb barrier within the super-heavy element (SHE) research project a multi-stage R&D program of GSI/HIM and IAP is currently in progress. It aims for developing a supercon-ducting (sc) continuous wave (CW) LINAC with multiple CH cavities as key components downstream the High Charge State Injector (HLI) at GSI. The LINAC design is challenging due to the requirement of intense beams in CW mode up to a mass-to-charge ratio of 6, while covering a broad output energy range from 3.5 to 7.3 MeV/u with unchanged minimum energy spread. Testing of the first CH-cavity in 2016 demonstrated a promising maximum accelerating gradient of Ea = 9.6 MV/m; the worldwide first beam test with this sc multi-gap CH-cavity in 2017 was a milestone in the R&D work of GSI/HIM and IAP. In the light of experience gained in this research so far, the beam dynamics layout for the entire LINAC has recently been updated and optimized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO084  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1P02 Injection Complex Development for the NICA-project at JINR rfq, linac, acceleration, booster 663
 
  • A.V. Butenko, B.V. Golovenskiy, A. Govorov, A.D. Kovalenko, V.A. Monchinsky, A.V. Smirnov, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • D.E. Donets, K.A. Levterov, D.A. Lyuosev, A.A. Martynov, V.V. Mialkovskiy, D.O. Ponkin, K.V. Shevchenko, I.V. Shirikov, A.O. Sidorin
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • H. Höltermann, H. Podlech, U. Ratzinger, A. Schempp
    BEVATECH, Frankfurt, Germany
  • T. Kulevoy
    ITEP, Moscow, Russia
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is still under construction at JINR, Dubna. Two Linacs should serve as injectors for this new accelerator complex. LU-20 as an Alvarez based lLinac for light polarized ions and the new Heavy Ion Linear Accelerator HILAC dedicated to heavy ion beam operation. Main results of the HILAC commissioning with carbon beam from the laser ion source should be discussed. Besides a new R&D-project is ongoing to developed superconducting cavities for a new light ion linear injector which created to upgrade the injector complex. The current status of linac design and results of the beam dynamics simulations and SRF technology developments should be presented as well.  
slides icon Slides TH1P02 [8.162 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TH1P02  
About • paper received ※ 17 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO051 The Multi-physics Analysis of LEAF RFQ rfq, cavity, simulation, beam-transport 805
 
  • X.B. Xu, T. He, Y. He, C.X. Li, L. Lu, W. Ma, A. Shi, L.B. Shi, L.P. Sun, C.C. Xing, L. Yang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  The 81.25 MHz CW RFQ is designed to accelerate heavy ions with Q/A from 1/7 to 1/2 at 0.5 MeV/u for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). The four-vane RFQ consists of six mod-ules with a total length of 5.95 meters, For the CW oper-ating mode, thermal management will be a very important issue, Therefore a multi-physics analysis is necessary to ensure that the cavity can stably operate at the high RF power . The multi-physics analysis process includes RF electromagnetic analysis, thermal analysis, mechanical analysis, and the frequency shift, the cooling water system is used for frequency tunning by the temperature adjustment, and also analyze RFQ undercuts, fixed tuners, and pi-mode rods, the results show that the thermal and structural design of this RFQ is reasonable.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO051  
About • paper received ※ 17 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO072 Cryogenic Tests of the Superconducting β=0.069 CH-cavities for the HELIAC-project cavity, linac, cryogenics, accelerating-gradient 855
 
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, M. Heilmann, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  In the future the existing UNILAC (UNIversal Linear Accelerator) at GSI will be most exclusively used as an injector for FAIR to provide short pulse high intensity heavy ion beams at low repetition rates [Barth3]. A new superconducting (sc) continuous wave (cw) high intensity heavy ion Linac should provide ion beams with max. duty factor above the coulomb barrier for the Super Heavy Element (SHE) program at GSI. The fundamental Linac design comprises a low energy beam transport (LEBT)-section followed by a sc Drift Tube Linac (DTL) consisting of sc Crossbar-H-mode (CH) structures for acceleration up to 7.3 MeV/u [*]. After the successful test and commissioning of the first demonstrator section with heavy ion beam from the HLI in 2017 [**], the next two sc CH-structures have been constructed and the first one has been extensively tested at cryogenic temperatures at the Institute for Applied Physics (IAP) at Goethe University Frankfurt (GUF). The results of the final cold test of the first CH-structure as well as the next steps realizing a new sc cw heavy ion LINAC at GSI will be presented.
[*]W. Barth et al., "Further investigations for a superconducting cw-Linac at GSI"
[**]W. Barth et al., "First high intensity heavy ion beam tests with a superconducting multi gap CH-cavity"
 
poster icon Poster THPO072 [1.150 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO072  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO073 RF Commissioning of the Superconducting 217 MHz CH Cavity for Heavy Ions and First Beam Operation cavity, linac, SRF, MMI 859
 
  • F.D. Dziuba, K. Aulenbacher, W.A. Barth, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, M. Heilmann, J. Salvatore, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  Future research programs at GSI in the field super heavy element (SHE) synthesis require high intense heavy ion beams above the coulomb barrier and high average particle currents. The upcoming demands exceed the technical opportunities of the existing UNIversal Linear ACcelerator (UNILAC). Consequently, a new dedicated superconducting (sc) continuous wave (cw) linac is crucial to keep the SHE research program at GSI competitive on a high level. Recently the first linac section, serving as a prototype to demonstrate the reliable operability of 217 MHz multi gap crossbar-H-mode (CH) cavities under a realistic accelerator environment, has been extensively tested with a heavy ion beam delivered from the GSI High Charge State Injector (HLI). Fulfilling its role as a key component of the whole demonstrator setup. The first sc 217 MHz CH cavity (CH0) successfully accelerated heavy ions up to the design beam energy and even beyond at high beam intensities and full transmission. In this contribution the rf commissioning and the first beam operation of the cavity is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO073  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO076 Multiphysics Design Studies of a Superconducting Quarter-wave Resonator at Peking University cavity, multipactoring, simulation, SRF 863
 
  • M. Chen, S. Chen, A.Q. Cheng, W. Cheng, J.K. Hao, S.W. Quan, F. Zhu
    PKU, Beijing, People’s Republic of China
 
  Funding: This work is supported by National Basic Research Program (2014CB845504)
A 81.25MHz, geometric β=0.046 quarter-wave resonator has been designed and analysed at Peking University. This paper mainly presents the multi-physics studies of this cavity, include electromagnetic design, mechanical analysis and multipacting simulation, to predict its behaviour under practical operating process. Various transverse vibration modes of inner conductor were found under different fixed conditions and an asymmetric shorting plate was adopted to avoid high possibility of multipacting
"quarter-wave resonator"
"multiphysics"
"multipacting"
"frequency detuning"
"stiffening design"
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO076  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO107 High Power Coupler R&D for Superconducting CH-cavities cavity, linac, simulation, Windows 920
 
  • J. List, K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, M. Heilmann, J. Salvatore, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The upcoming demands of the future research programs at GSI exceed the technical opportunities of the existing UNIversal Linear ACcelerator (UNILAC). Besides, the machine will be exclusively used as an injector for FAIR (Facility for Antiproton and Ion Research) providing high power heavy ion beams at a low repetition rate for injection into the synchrotron. A new dedicated superconducting (sc) continuous wave (cw) Linac is crucial to keep the research program competitive. The first part of the cw-linac, comprising a 217 MHz multi gap Crossbar-H-mode (CH) cavity surrounded by two sc solenoids inside a cryostat, already served as a prototype demonstrating reliable operability in a realistic accelerator environment. A sufficient high power RF-coupling concept is needed to feed this newly developed cw-RF cavity with up to 5 kW of RF-power. A high power coupler test stand was recently built to provide for a testing environment; further upgrade measures of this test area are foreseen. This contribution deals with the recent coupler R&D for the demonstrator set up. Besides simulations of thermal losses at the coupler (inside the RF-cavity) will be shown as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO107  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1A05 Development of Pulsed Gas Strippers for Intense Beams of Heavy and Intermediate Mass Ions target, operation, injection, linac 982
 
  • P. Gerhard, W.A. Barth, M. Bevcic, Ch.E. Düllmann, L. Groening, K.P. Horn, E. Jäger, J. Khuyagbaatar, J. Krier, M.T. Maier, P. Scharrer, A. Yakushev
    GSI, Darmstadt, Germany
  • W.A. Barth, Ch.E. Düllmann, J. Khuyagbaatar
    HIM, Mainz, Germany
  • Ch.E. Düllmann
    Johannes Gutenberg University Mainz, Institut of Nuclear Chemistry, Mainz, Germany
 
  The GSI UNILAC together with SIS18 will serve as injector for the future FAIR. A modified 1.4~MeV/u gas stripper setup has been developed, aiming at an increased yield into the particular desired charge state. The setup delivers short pulses of high gas density in synchronization with the beam pulse. This provides a higher gas density. Different gases as stripping targets were tested. Measurements with various isotopes and gas densities were conducted to investigate the stripping properties. High intensity beams of 238U4+ were successfully stripped using hydrogen as stripping gas. The stripping efficiency was significantly increased while the beam quality remained suitable. The new stripper setup and major results achieved during the development are presented. Problems with the fast valves arose while they were used for a longer duration. Another revision of the setup took place to exchange the valves. In parallel, the installation of the required infrastructure for regular operation of the gas stripper using hydrogen was planned.  
slides icon Slides FR1A05 [10.013 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-FR1A05  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)