Keyword: rf-amplifier
Paper Title Other Keywords Page
TUPO040 Tests of Multi-frequency Coaxial Resonators cavity, TRIUMF, niobium, controls 420
 
  • Z.Y. Yao, J.J. Keir, P. Kolb, A. Kong, R.E. Laxdal, B. Matheson, E. Thoeng, B.S. Waraich, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  A significant issue in low beta resonators is medium field Q-slope (MFQS) at 4K. To study the MFQS and the field dependence of surface resistance in low beta resonators, a quarter-wave resonator (QWR) and a half-wave resonator (HWR) were designed to be tested at integer harmonic frequencies of 200MHz, and up to 1.2GHz. A series of chemistry and heat treatments are proposed to these cavities. A systemic study on the surface resistance of the coaxial resonators associating with post-processing, RF field, and frequency is in progress. The cavities were designed and fabricated. The cold test results will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO040  
About • paper received ※ 17 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO091 90 kW Solid-state RF Amplifier with a TE011-mode Cavity Power-combiner at 476 MHz cavity, controls, FEL, power-supply 889
 
  • Y. Otake, T. Asaka, T. Inagaki
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Aizawa, K. Nagatsuka, T. Okuyama, K. Sato, H. Yamada
    Nihon Koshuha Co. Ltd, Yokohama, Japan
 
  Solid-state RF amplifiers, which have long lifetimes and small failures, are the recent trend of reliable and stable high-power rf sources for particle accelerators. Hence, we designed a 90kW solid-state amplifier with an extreme low-loss TE011 mode cavity (Q0=100, 000) power-combiner operated at 476 MHz and a 6 us pulse width. Developing this amplifier is for replacement of an IOT rf amplifier, at the X-ray free-electron laser, SACLA. In SACLA, highly RF phase and amplitude stabilities of less than 0.02 deg. and 10-4 in rms are necessary to stable lasing within a 10 % intensity fluctuation. The amplifier comprises a drive amplifier, a reentrant cavity rf power divider, 100 final amplifiers with a 1 kW output each and a TE011 mode cavity combiner. Water-cooling within 10 mK and a DC power supply with a noise of less than -100 dBV at 10 Hz for the amplifier is necessary to realize the previously mentioned stabilities. Based on the test results of the amplifier, the above-mentioned specifications with the extreme low-loss are promising. The amplifier also allows us to operate in pulsed and CW rfs for linacs and ring accelerators. We report the performance of the 90kW amplifier.  
slides icon Slides THPO091 [1.750 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO091  
About • paper received ※ 06 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)