Keyword: superconductivity
Paper Title Other Keywords Page
TUPO042 RF Results of Nb Coated SRF Accelerator Cavities via HiPIMS cavity, SRF, site, niobium 427
 
  • M.C. Burton, A.D. Palczewski, H.L. Phillips, C.E. Reece, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
  • R.A. Lukaszew
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
Bulk Niobium (Nb) SRF (superconducting radio frequency) cavities are currently the preferred method for acceleration of charged particles at accelerator facilities around the world. Since the SRF phenomena occurs within a shallow depth of 40 nm (for Nb), a proposed option has been to deposit a superconducting Nb thin film on the interior of a cavity made of a suitable alternative material such as copper or aluminum. While this approach has been attempted in the past using DC magnetron sputtering (DCMS), such cavities have never performed at the bulk Nb level. However, new energetic condensation techniques for film deposition offer the opportunity to create suitably thick Nb films with improved density, microstructure and adhesion compared to traditional DCMS. One such technique that has been developed somewhat recently is ’High Power Impulse Magnetron Sputtering’ (HiPIMS). Here we report early results from various thin film coatings carried out on 1.3 GHz Cu Cavities, a 1.5 GHz Nb cavity and small Cu coupon samples coated at Jefferson Lab using HiPIMS.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO042  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO066 First High Power Test of the ESS High Beta Elliptical Cavity cavity, SRF, linac, accelerating-gradient 841
 
  • H. Li, L. Hermansson, M. Jobs, R.J.M.Y. Ruber, R. Santiago Kern
    Uppsala University, Uppsala, Sweden
  • G. Devanz, T. Hamelin
    CEA/DSM/IRFU, France
 
  ESS, the European Spallation Source, will adopt elliptical multi-cell superconducting cavities with a beta value of 0.86 to accelerate the proton beam up to 2 GeV at the last section of the linac. A 5-cell high-beta cavity for ESS project was tested with high power at FREIA Laboratory. A pulse mode test stand based on a self-excited loop was used in this test. The qualification of the cavity package involved a 5-cell elliptical cavity, a fundamental power coupler, a cold tuning system, LLRF system and a RF station. These tests represented an important verification before the series production. This paper presents the test configuration, RF conditioning history, first high power performance and experience of this cavity package.  
slides icon Slides THPO066 [1.437 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO066  
About • paper received ※ 14 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)