Keyword: target
Paper Title Other Keywords Page
MO1P01 Status of the SNS Proton Power Upgrade Project linac, cryomodule, proton, operation 24
 
  • J. Galambos, M.S. Champion, M.P. Howell, S.-H. Kim, J. Moss, M.A. Plum, B.W. Riemer, K.S. White
    ORNL, Oak Ridge, Tennessee, USA
  • M. S. Connell, R. W. Steffey
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  SNS plans to double the power capability of the SNS proton beam by increasing the beam energy and the beam current. Accelerator scope includes additional superconducting RF cryo-modules and supporting RF systems, and upgrades to existing RF systems. Also the accumulator storage ring and the neutron source target will be upgraded to accommodate the additional power. The technical approach, project status and plans will be discussed.  
slides icon Slides MO1P01 [6.457 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MO1P01  
About • paper received ※ 10 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO1P03 Status of the ESS Linac linac, cavity, ion-source, controls 35
 
  • A. Sunesson, P. Arnold, S.L. Birch, R. Garoby, M. Jensen, M. Lindroos, C.A. Martins, A. Nordt, T.J. Shea, J.G. Weisend
    ESS, Lund, Sweden
 
  The European Spallation Source under construction in Lund (Sweden) uses a 2 GeV-5MW pulsed superconducting linac as proton driver. Normal conducting accelerating structures are used up to 92 MeV and superconducting structures up to 2 GeV. Most linac components are designed and procured as in-kind contributions by institutes/laboratories in the European partner countries. Installation of the Ion source delivered by INFN-Catania started end 2017. Installation of more components and infrastructure progresses at a high pace. Commissioning of the normal conducting linac section will take place in parallel with installation of the superconducting section. Beam commissioning of the superconducting section will be done starting in 2021, interlaced with the installation of additional high beta cryomodules. Beam will be sent to the target in 2022, initially at an energy of 1.3 GeV. Start of the User Programme is scheduled in 2023, when some neutron instruments will be ready and end of construction is in 2025, with the full set of instruments operational. This paper reports the status of linac components construction, the progress with installation on site, and the overall project schedule.  
slides icon Slides MO1P03 [14.161 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MO1P03  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO028 Survey and Alignment System of 100 MeV/100 kW Electron Linear Accelerator quadrupole, survey, electron, neutron 87
 
  • O. Bezditko, I.I. Karnaukhov, A.Y. Zelinsky
    NSC/KIPT, Kharkov, Ukraine
 
  For successful operation and working of electron linear accelerator of "NEUTRON SOURCE" driver it is necessary that all the acceleration sections, the quadrupole triplets, the quadrupole lenses, the dipole magnets, the scanning magnets and the chicane should be installed in design position according design parameters. Accuracies of all electromagnetic elements installation are 150 mkm for all three rotation freedom. The whole process, fiducialization and developing of survey net, alignment is controlled by laser tracker Leica AT 401.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO028  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO063 Development of Side-coupled X-band Medical Linear Accelerator for Radiotherapy cavity, linac, electron, gun 139
 
  • Y.S. Lee, Y.W. Choi, G.J. Kim, I.S. Kim, J.I. Kim, S. Kim, J.H. Lee
    KERI, Changwon, Republic of Korea
  • J.H. Hwang, Y.N. Kang, A.R. Kim, J.N. Kim, T.G. Oh, Y.A. Oh, Y. J. Seol, J.S. Shin
    The Catholic University of Korea, Seoul, Republic of Korea
 
  Recently, LINAC-based radiotherapy equipment are being developed by combining with imaging devices such as CT or MRI, so that it is possible to precisely focus high dose radiation on tumor tissues while minimizing the normal tissue damage. In order to place the diagnostic and treatment devices simultaneously in a confined space, constraints related to interference and volume between the subsystems must be considered. To meet these requirements, the size and weight of the LINAC system need to be reduced, which can be achieved by applying X-band technology. For the purpose of use in IMRT based on image guided radiotherapy, we developed a 9.3 GHz X-band medical LINAC using side-coupled structure. The LINAC is designed to have the accelerating field strength of 16.8 MV/m, and the beam current transmission efficiency of 26 % at the end of accelerating cell when the supplied RF power is at 1.7 MW. Therefore, it can accelerate the electron beam up to 6.2 MeV with having about 90 mA beam current. We plan to carry out the performance test using beam diagnostics system and X-ray measurement system, and the details of design and experimental results of LINAC will be described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO063  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO069 Nuclear and Mechanical Basic Design of Target for Mo-99 Production Using High Power Electron Linac photon, electron, neutron, linac 148
 
  • A. Taghibi Khotbeh-Sara, F. Rahmani
    KNTU, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • H. Khalafi
    AEOI, Tehran, Iran
  • M. Mohseni Kejani
    Shahid Beheshti University, Tehran, Iran
 
  Today providing enough supplies of 99mTc / 99Mo as a high usage radioisotope in diagnostic nuclear medicine for the world demand is a big challenge. One of the proofed ways to access reliable source of this radioisotopes is production using e-LINAC [1]. In this investigation it was tried to find the simple and the optimized design of 99Mo production target based on photoneutron reaction using e-LINAC. Based on the Monte-Carlo calculation for radiation transport and finite element thermal analysis, 9 thin plates of enriched 100Mo was suggested. Equal distance between plates was considered for cooling to prevent target melting. The main target includes only 100Mo in one-stage approach method to increase production rate in compare with two-stage approach [2]. Applying 2.5 m/s for inlet velocity of cooling water provides suitable cooling process with maximum temperature of target about 900 ˚C.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO069  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO082 Commissioning Status of the Linac for the iBNCT Project rfq, neutron, operation, DTL 174
 
  • M. Sato, Z. Fang, M.K. Fukuda, Y. Fukui, K. Futatsukawa, Y. Honda, K. Ikegami, H. Kobayashi, C. Kubota, T. Kurihara, T. Miura, T. Miyajima, F. Naito, K. Nanmo, T. Obina, T. Shibata, T. Sugimura, A. Takagi, E. Takasaki
    KEK, Ibaraki, Japan
  • K. Hasegawa
    JAEA, Ibaraki-ken, Japan
  • H. Kumada, Y. Matsumoto, Su. Tanaka
    Tsukuba University, Graduate School of Comprehensive Human Sciences, Ibaraki, Japan
  • N. Nagura, T. Ohba
    Nippon Advanced Technology Co., Ltd., Tokai, Japan
  • T. Onishi
    Tsukuba University, Ibaraki, Japan
  • T. Ouchi, H. Sakurayama
    ATOX, Ibaraki, Japan
 
  Boron neutron capture therapy (BNCT) is one of the particle-beam therapies which use secondary products from a neutron capture on boron medicaments implanted into cancer cells. This has been originally studied with neutrons from nuclear reactors, meanwhile, many activities have been recently projected with accelerator-based neutron generation. In the iBNCT (Ibaraki BNCT) project, the accelerator is consisted with a radio frequency quadrupole (RFQ) and an Alvarez type drift-tube linac (DTL). Protons extracted from an ion source are accelerated up to 3 MeV and 8 MeV, respectively, and bombarded onto a beryllium target to generate neutrons. The design of the linac is based on the J-PARC one, but the most significant difference is the higher duty factor to have a sufficient epithermal neutron flux for BNCT. We have started the commissioning from the end of 2016, and the beam current of 1.3 mA with a repetition of 50 Hz has been achieved with an acceptable stability. Further beam commissioning and reinforcement of the vacuum and cooling water system will be performed toward higher beam current. In this contribution, the current status and future prospects of the linac will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO082  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO041 LCLS-II Cavity Higher Order Modes Coupler Tuning Optimization and Challenges at Jefferson Lab HOM, cavity, cryomodule, vacuum 423
 
  • A.D. Solopova, D. Forehand, A.D. Palczewski
    JLab, Newport News, Virginia, USA
  • T.N. Khabiboulline
    Fermilab, Batavia, Illinois, USA
 
  LCLS-II is a new XFEL linac based on 1.3GHz SRF linac. Half of the LCLS-II cryomodules are being produced at Jefferson Lab. This paper summarizes the Higher Order Mode filter tuning challenges at Jefferson Lab and describes optimization of the procedure for a 9-cell Tesla type cavity and its integration into a cryomodule production line.  
poster icon Poster TUPO041 [0.719 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO041  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO068 Vertical Electropolishing of 1.3 GHz Niobium Nine-cell SRF Cavity: Bulk Removal and RF Performance cavity, cathode, niobium, SRF 491
 
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
  • H. Ito
    Sokendai, Ibaraki, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  Vertical electropolishing (VEP) technique have been successfully developed for 1.3 GHz niobium (Nb) single cell cavity to achieve a smooth surface with uniform removal and better RF performance as achieved after horizontal EP (HEP) process. VEP parameters for 1.3 GHz Nb nine-cell cavities are being studied using a nine-cell coupon cavity and our unique Ninja cathode. The investigated VEP parameters heretofore were applied on a 1.3 GHz Tesla shape nine-cell superconducting RF cavity for bulk removal of 100 µm followed by fine removal of 20 and 10 µm. The interior surface was found to be smooth and shiny after the VEP process. Our recently developed dual flow technique, in which the EP acid is flown separately in the Ninja cathode housing and cavity, yielded lower asymmetry in removal along the cavity length. The cavity was tested in a vertical cryostat after the final VEP process. The cavity achieved 28.3 MV/m at Q0 value of 6.7x109. The cavity performance was almost the same as in the baseline vertical test performed after the HEP process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO068  
About • paper received ※ 13 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO092 Beam Dynamics and Collimation Following MAGIX at MESA* electron, simulation, scattering, radiation 540
 
  • B. Ledroit, K. Aulenbacher
    IKP, Mainz, Germany
 
  Funding: * Supported by the DFG through GRK 2128
The Mainz Energy-recovering Superconducting Accelerator (MESA) will be an electron accelerator allowing operation in energy-recovery linac (ERL) mode, where beam energy is recovered by decelerating the beam in linac cryomodules and transferring kinetic energy to the RF. The ERL mode provides the opportunity to operate experiments at peak energy with thin targets, combining high luminosities typical for storage rings and high beam brightness typical for linacs. The MESA Internal Gas Target Experiment (MAGIX) aims to operate jet targets at high luminosities with different gases up to Xenon. As scattering effects in the beam rise with the atomic number, investigations on the impact of the target on beam dynamics and beam losses are required for machine safety. The goal of this work is to understand target induced halo, track halo particles through downstream sections and protect the machine with a suitable collimation system and shielding from direct and indirect damage through beam losses and radiation. The present status of the investigations is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO092  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO097 Design of C-band Electron Linear Accelerator for a Complex of Radiation Therapy electron, gun, radiation, controls 550
 
  • L. Ovchinnikova, V.I. Shvedunov
    SINP MSU, Moscow, Russia
  • L. Ovchinnikova, V.I. Shvedunov
    LEA MSU, Moscow, Russia
 
  Funding: This material is based upon work supported by the Ministry of Education and Science of the Russian Federation, under Grant Agreement No. 14.582.21.0011, Grant Agreement Unique ID RFMEFI58217X0011.
The report presents the design of the linear electron accelerator for a complex of radiation therapy. The three-electrode electron gun and C-band accelerating structure are optimised to produce a therapeutic electron beam with an energy of 6 MeV and a dose rate of 10 Gy/min and a beam with an energy of 2.5 MeV to obtain a portal image. The beam size at the bremsstrahlung target in both modes does not exceed 2 mm. The total length of the accelerating system with the electron gun does not exceed 330 mm. The accelerating structure is fed by RF power from a multibeam klystron at a frequency of 5,712 MHz with a maximum pulsed power of 3.5 MW.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO097  
About • paper received ※ 10 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO021 Research on X Ray Characteristics Produced by Highenergy Picosecond Electron Beam Shooting electron, photon, linac, radiation 729
 
  • X.D. Zhang, X.P. Ouyang, B. Sun, X.J. Tan, X.F. Weng
    NINT, Xi’an, People’s Republic of China
 
  Funding: Supported by National Natural Science Foundation of China(11375142)
The X ray sources based on electron linac can produce X-rays with high energy, concentrated directions, and strong penetrating power, which have been widely applied in various fields. An electronic linear accelerator which has been built at present can provide an electron beam with energy of 120 MeV and pulse width of picosecond. The electron beam shooting at the metal targets can produce ultra-fast pulsed X-rays in the order of picosecond. In this paper, the pulse X ray characteristics are studied through simulating electron beam shooting at four metal targets with different thickness of Au, Ta, U, W and Pb by MCNPX program. The calculation shows that the X-rays can reach about 1010p/pulse and the pulse width can reach about picosecond level, when the pulsed electron beams with energy of 120 MeV ,charge of 0.5nC and pulse width of picosecond shooting at Ta targets. The yield and time width of pulsed X-rays are related to the diameter and thickness of the target.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO021  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO040 Operation Experiences of the J-PARC Linac linac, operation, DTL, cavity 774
 
  • K. Hasegawa
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The J-PARC linac has delivered beam to users since 2008. As of 2018, the linac provides a 40 mA beam at an energy of 400 MeV to the following Rapid Cycling Synchrotron. We have had many issues to impede high availability during the operation. One of them was troubles of high voltage power supply of klystrons. The other category is related to vacuum property in accelerating cavities. The vacuum pumps were reinforced at the RFQ#1 in 2009. The cleaning of the inside surface of some acceleration cavities were performed after the big earthquake in 2011. The cooling water flow rate drop had been a long-time issue. We modified a cooling system to take better flow balances. As a result of these improvement, the availability is approximately 92% or more in these days. However, we have encountered another issue due to some aging components. The operation experiences and availability improvement at the J-PARC linac will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO040  
About • paper received ※ 19 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO097 Recent Results for Study of Ceramic and Copper Plating for Power Couplers electron, survey, controls, FEL 905
 
  • Y. Yamamoto, E. Kako, S. Michizono
    KEK, Ibaraki, Japan
  • E. Cenni
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Four
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • Y. Okii
    Nomura Plating Co, Ltd., Osaka, Japan
 
  KEK has conducted a survey to select an optimum ceramic after withdrawal by a domestic manufacturing company two years ago. For this selection, there are four important items on the properties of ceramic; that is, relative permittivity, dielectric loss tangent, surface and volume resistance, and secondary electron emission coefficient. For measurements of these parameters, five kinds of ceramic samples supplied from three companies were measured using three kinds of measurement systems. For measurement of secondary electron emission, scanning electron microscope (SEM) with beam blanking system was used. On the other hand, residual resistivity ratio (RRR) for copper plating, which is the most important item for quality control, has also been carried out while changing plating thickness and acid temperature. In this report, the recent results for these studies will be presented in detailed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO097  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO113 Design of 4 Ampere S-Band Linac Using Slotted Iris Structure for Hom Damping linac, HOM, damping, beam-loading 934
 
  • J. Pang, S. Chen, X. He
    CAEP/IFP, Mainyang, Sichuan, People’s Republic of China
  • S. Pei, H. Shi, J.R. Zhang
    IHEP, Beijing, People’s Republic of China
 
  An S-band LINAC with the operating frequency of 2856 MHz and beam current of 4 A was designed for flash X-ray radiography for hydrodynamic test. The optimization of the parameters of the LINAC was processed to obtain the minimum beam radius and the maximum energy efficiency. For the purpose of reducing the beam orbits offset at the exit of LINAC, a slotted iris accelerating structure would be employed to suppress the transverse Higher Order Modes (HOMs) by cutting four radial slots in the iris to couple the HOMs to SiC loads. In this paper, we present the design of the LINAC and the results of beam dynamic analysis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO113  
About • paper received ※ 10 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1A05 Development of Pulsed Gas Strippers for Intense Beams of Heavy and Intermediate Mass Ions heavy-ion, operation, injection, linac 982
 
  • P. Gerhard, W.A. Barth, M. Bevcic, Ch.E. Düllmann, L. Groening, K.P. Horn, E. Jäger, J. Khuyagbaatar, J. Krier, M.T. Maier, P. Scharrer, A. Yakushev
    GSI, Darmstadt, Germany
  • W.A. Barth, Ch.E. Düllmann, J. Khuyagbaatar
    HIM, Mainz, Germany
  • Ch.E. Düllmann
    Johannes Gutenberg University Mainz, Institut of Nuclear Chemistry, Mainz, Germany
 
  The GSI UNILAC together with SIS18 will serve as injector for the future FAIR. A modified 1.4~MeV/u gas stripper setup has been developed, aiming at an increased yield into the particular desired charge state. The setup delivers short pulses of high gas density in synchronization with the beam pulse. This provides a higher gas density. Different gases as stripping targets were tested. Measurements with various isotopes and gas densities were conducted to investigate the stripping properties. High intensity beams of 238U4+ were successfully stripped using hydrogen as stripping gas. The stripping efficiency was significantly increased while the beam quality remained suitable. The new stripper setup and major results achieved during the development are presented. Problems with the fast valves arose while they were used for a longer duration. Another revision of the setup took place to exchange the valves. In parallel, the installation of the required infrastructure for regular operation of the gas stripper using hydrogen was planned.  
slides icon Slides FR1A05 [10.013 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-FR1A05  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)