Keyword: wakefield
Paper Title Other Keywords Page
MOPO016 Narrow-Band Terahertz Generation from Beam Pipe with Helix Wires electron, radiation, simulation, impedance 65
 
  • D. Wang
    TUB, Beijing, People’s Republic of China
 
  We studied through analysis and numerical simulations the use of a relativistic electron bunch to drive a metallic beam pipe with helix wire inside, for the purpose of gen-erating narrow-band terahertz radiation. we have shown that the frequency is related to the radius of the pipe and that of the wire, thus one can generate a narrow-band radiation pulse with frequency tunable through this scheme with different pipes and wires. The total energy of a few milli-Joules. The pulse length tends to be on the order of hundreds of picoseconds. We have also shown that, if the pipe radius is tapered along its length, the generated pulse will end up with a frequency chirp.
*wangdan2016@mail.tsinghua.edu.cn
*yanlx@mail.tsinghua.edu.cn
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO016  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1A04 The Proton Driven Advanced Wake Field Acceleration Experiment (AWAKE) at CERN plasma, proton, electron, acceleration 642
 
  • S. Döbert
    CERN, Geneva, Switzerland
 
  The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wake field generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world’s first proton driven plasma wake field acceleration experiment. The experiment uses the 400 GeV proton beam from the SPS which travels through a 10 m long Rb-vapour plasma cell where it gets self-modulated and generates the plasma wake fields. Eventually an electron beam is injected externally to probe the wake-fields. AWAKE will has completed several experimental campaigns starting in 2016. Results from the initial characterization of the plasma cell and measurements of the seeded self-modulation of the proton beam will be presented. Experiments to accelerate externally injected electrons using the proton driven plasma wake fields will start in 2018 and first results will be reported.  
slides icon Slides TH1A04 [4.787 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TH1A04  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)