TH1P —  Plenary Session 11   (20-Sep-18   14:00—15:00)
Chair: R.E. Laxdal, TRIUMF, Vancouver, Canada
Paper Title Page
TH1P01 Commissioning of CERN LINAC4 658
 
  • A.M. Lombardi
    CERN, Geneva, Switzerland
 
  This talk reviews the commissioning effort of CERN’s new H linear accelerator, Linac4, which is presently undergoing a beam quality and reliability run. Linac4 will be connected to the LHC proton injector chain during the next long LHC shutdown (LS2) and will then replace the 50MeV proton Linac2.  
slides icon Slides TH1P01 [4.591 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TH1P01  
About • paper received ※ 12 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1P02 Injection Complex Development for the NICA-project at JINR 663
 
  • A.V. Butenko, B.V. Golovenskiy, A. Govorov, A.D. Kovalenko, V.A. Monchinsky, A.V. Smirnov, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • D.E. Donets, K.A. Levterov, D.A. Lyuosev, A.A. Martynovpresenter, V.V. Mialkovskiy, D.O. Ponkin, K.V. Shevchenko, I.V. Shirikov, A.O. Sidorin
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • H. Höltermann, H. Podlech, U. Ratzinger, A. Schempp
    BEVATECH, Frankfurt, Germany
  • T. Kulevoy
    ITEP, Moscow, Russia
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is still under construction at JINR, Dubna. Two Linacs should serve as injectors for this new accelerator complex. LU-20 as an Alvarez based lLinac for light polarized ions and the new Heavy Ion Linear Accelerator HILAC dedicated to heavy ion beam operation. Main results of the HILAC commissioning with carbon beam from the laser ion source should be discussed. Besides a new R&D-project is ongoing to developed superconducting cavities for a new light ion linear injector which created to upgrade the injector complex. The current status of linac design and results of the beam dynamics simulations and SRF technology developments should be presented as well.  
slides icon Slides TH1P02 [8.162 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TH1P02  
About • paper received ※ 17 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1P03 New Trends in Proton and Carbon Therapy Linacs 666
 
  • S. Benedetti
    CERN, Geneva, Switzerland
 
  In the last years, many developments have contributed to make feasible an all linac solution for proton and carbon ion therapy, with typical output energies of about 200 MeV and 400 MeV/u, respectively. The efficient beam matching of the source to the high-energy linacs, operating at 3 GHz, represents one of the major challenges. With the successful test of a 750 MHz RFQ at CERN, this possibility starts to be a reality. At the same time CERN is testing a high-gradient S-band cavity, successfully exceeding the accelerating gradient goal of 50 MV/m - more than twice what has been obtained before - and paving the way to more compact medical facilities. In this paper, some of the most significant projects involving linear accelerators for hadron therapy will be presented.  
slides icon Slides TH1P03 [3.378 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TH1P03  
About • paper received ※ 11 September 2018      issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)