The new FAIR post-stripper DTL

Alvarez 2.0
Outline

- Motivation
- Beam dynamics
- RF design
- FoS (First of Series) – 1st cavity section
- Schedule
- Summary
UNIversal Linear Accelerator (UNILAC)

Design Parameters after Upgrade

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ion A/q</td>
<td>(\leq 8.5), i.e. (^{238}\text{U}^{28+})</td>
</tr>
<tr>
<td>beam current (pulse) * A/q</td>
<td>1.76 (0.5% duty cycle) mA</td>
</tr>
<tr>
<td>input beam energy</td>
<td>2.2 keV/u</td>
</tr>
<tr>
<td>output beam energy</td>
<td>3.0 - 11.7 MeV/u</td>
</tr>
<tr>
<td>operating frequency</td>
<td>36.136 / 108.408 MHz</td>
</tr>
<tr>
<td>length</td>
<td>(\approx 115) m</td>
</tr>
<tr>
<td>beam pulse duration</td>
<td>(\leq 1000) µs</td>
</tr>
<tr>
<td>beam repetition rate</td>
<td>(\leq 10) Hz</td>
</tr>
</tbody>
</table>

Diagram

- MUCIS
- MEVVA
- CHORDIS
- IH-Cavity
 - 1.4 MeV/u
- ECR
- RFQ
 - 120 keV/u
- IH-DTL
 - 1.4 MeV/u
- Gaseous Stripping
- Alvarez-DTL
 - 3.6 / 4.8 / 5.9 / 8.6 / 11.4 MeV/u
- Single Gap Resonators
Alvarez DTL
What is the motivation for a new post stripper DTL?

1. FAIR goal
 - High current applications as required by FAIR (high intensity operation of heavy ions was not considered in the 1960’s)

2. Operational risk
 - Alvarez DTL is in regular operation since 1978 (expected lifetime: ~20 years).
 - An increase in failures is observable.
 - Maintenance effort is increasing.
What are the operational risks?

<table>
<thead>
<tr>
<th>Risks</th>
<th>Tank and endplates</th>
<th>Drift tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>Water leaks</td>
<td>Water leaks</td>
</tr>
<tr>
<td>ii)</td>
<td>Degredation of RF-properties</td>
<td>Degredation of RF-properties</td>
</tr>
<tr>
<td>iii)</td>
<td>Failure of cooling system</td>
<td>Failure of cooling system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv) Electrical shortcut of internal windings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reasons</th>
<th>Tank and endplates</th>
<th>Drift tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>Corrosion (mild steel)</td>
<td>Erosion</td>
</tr>
<tr>
<td>ii)</td>
<td>Aging of the Cu layer</td>
<td>Aging of the Cu layer</td>
</tr>
<tr>
<td>iii)</td>
<td>Corrosion/Erosion products clog up the cooling channels</td>
<td>Corrosion/Erosion products clog up the cooling channels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv) Aging isolation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Countermeasures</th>
<th>Tank and endplates</th>
<th>Drift tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>i), ii)</td>
<td>Substitution of tanks and endplates</td>
<td>Substitution of drift tubes</td>
</tr>
</tbody>
</table>
| ii) | Cu-stripping and re-Cu-plating | iii)
| | Rinsing | Rinising, closed stainless steel cooling circuit in 2013 |
| iii) | Rinsing | |

Minimizing the operational risk means a one-to-one copy of the existing DTL
• no win of performance
• costs (and resources) for refurbishment are comparable to the costs of a new post-stripper DTL
What defines the FAIR goal?

- "upgraded" SIS18 space charge limit gap caused by design of UNILAC from 1960's, w.r.t. the post-stripper DTL:
 - not a dedicated HC DTL (intertank sections)
 - quadrupoles gradients are limited (phase advance)

 FAIR goal

(courtesy p: Spiller)
How to reach the FAIR goal?

Extensive upgrade program along the UNILAC

- Upgrades are backed by front-to-end-simulations
 - prediction: an upgraded UNILAC reaches the FAIR requirements
 - tool for further optimisation, future commissioning and operation

P. Gerhard et al.
FR1A04, 9:50 am
How to reach the FAIR goal with the new DTL beam dynamics layout?

- periodic focusing
 (new design of the inter-tank sections takes care about strict periodicity)

- avoid space charge driven emittance growth resonances
 (higher quadrupole gradients)
What are the results?

<table>
<thead>
<tr>
<th></th>
<th>FAIR</th>
<th>Zero current</th>
<th>Low energy</th>
<th>Larger long. emit.</th>
<th>Smaller long. emit.</th>
<th>Transvers. flat beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current, mA</td>
<td>16.5</td>
<td>0</td>
<td>0</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
</tr>
<tr>
<td>Input ε_x (rms), mm mrad</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.0875</td>
</tr>
<tr>
<td>Input ε_y (rms), mm mrad</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.35</td>
</tr>
<tr>
<td>Input ε_z (rms), mm mrad</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.14</td>
<td>0.035</td>
<td>0.07</td>
</tr>
<tr>
<td>Output energy, MeV/u</td>
<td>11.4</td>
<td>11.4</td>
<td>3.3</td>
<td>11.4</td>
<td>11.4</td>
<td>11.4</td>
</tr>
<tr>
<td>Transmission, %</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$\Delta \varepsilon_x$ (tot, 95%), %</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>$\Delta \varepsilon_y$ (tot, 95%), %</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>$\Delta \varepsilon_z$ (tot, 95%), %</td>
<td>10</td>
<td>0.7</td>
<td>1.7</td>
<td>5</td>
<td>11</td>
<td>4</td>
</tr>
</tbody>
</table>
What is expected in front of SIS18?

- taking tolerances into account

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrupole x,y displacement</td>
<td>± 0.15 mm</td>
</tr>
<tr>
<td>Quadrupole x,y rotation</td>
<td>± 1°</td>
</tr>
<tr>
<td>Quadrupole z rotation</td>
<td>± 0.1° - 0.4°</td>
</tr>
<tr>
<td>Gap voltage</td>
<td>± 1%</td>
</tr>
<tr>
<td>Gap phase</td>
<td>± 1°</td>
</tr>
<tr>
<td>Initial energy</td>
<td>± 0.5%</td>
</tr>
<tr>
<td>Input rms emittance (x,y,z)</td>
<td>± 15%</td>
</tr>
<tr>
<td>Input beam mismatches (x,y,z)</td>
<td>± 10%</td>
</tr>
<tr>
<td>Input Current</td>
<td>± 15%</td>
</tr>
</tbody>
</table>

SIS18-multi-turn injection performance chart
What is new concerning the rf-design?

At 1.0 Kilpatrick (maximum surface field), ~13% increase in shunt impedance

Modernisation of UNILAC RF-systems

1.8 MW THALES cavity amplifier prototype (2ms rf pulse length @10Hz)

G. Schreiber, B. Schlitt, GSI
What are the challenges?

- Dimension of the cavities
 (tight spatial conditions, higher gradients)
- Storage/assembling/testing areas on-site
- Expertise is retired
- Cu-plating
 Equipment is scrapped partly
- New drift tube design
- Regular beam time in parallel
- FAIR project in parallel
What is the First of Series (FoS)?

- Feb 2017: System-Decision: Alvarez type DTL
- Jul/Aug 2017: FoS funded with 1.5 M€ until 2021
- Nov 2017: Procurement of components starts
- 2018-2020: R&D: System design process development preparation test stand delivery of components
- 2021 Full performance tests -> rf characteristics -> pulsed quadrupoles -> cooling system

1st section of A1 cavity (11 + two ½ drifttubes)
What is the FoS-status?

Dummy cavity ($d_{out}=2.4$, $l=2.5m$)
- fabrication: balance between effort in fabrication and acceptable tolerances
- Cu-plating (120µm Cu-layer): surface quality ex factory, alternative process, handling, etc.

Pulsed quadrupole design (1st of ~200)
- Gradient: 51 T/m
- Effective length: 99.5 mm
- Integral field ($G^* L_{eff}$) = 5.07 T
- Current: 1109.6 A
- Conductor diameter: 5.5 mm
- Cooling channel diameter: 3.5 mm
- No. of windings: 5
- No. of cooling circuits: 1
- Yoke material: VACOFLUX50

Drift tube prototyping
- know-how acquisition (feasibility, spare part production, welding, etc.)

Cu-plating R&D
- new additive for electrolyte
- Test pipes (200µm)
How the schedule looks like?

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2/2021</td>
<td>Successful FoS project, TDR & funding available</td>
</tr>
<tr>
<td>Q2/2022</td>
<td>Delivery of components/cavities starts</td>
</tr>
<tr>
<td>Q2/2024</td>
<td>All components in-house</td>
</tr>
<tr>
<td>Q2/2024 + X</td>
<td>De-installation of existing post-stripper DTL</td>
</tr>
<tr>
<td>Q4/2024 + X</td>
<td>Cavity-wise installation and commissioning</td>
</tr>
<tr>
<td>Q4/2025 + X</td>
<td>DTL commissioning w/o and with beam</td>
</tr>
</tbody>
</table>

Strict boundary condition:

minimize the downtime

- don't touch the existing if there is any uncertainty about the new Alvarez
- sequential installation and commissioning
- UNILAC downtime has to match the FAIR schedule
Summary

- Two aspects require the substitution
 - Operational risk
 refurbishment of the existing DTL means an one-to-one-copy
 -> no gain in performance, no significant cost savings
 - FAIR intensity requirements for heavy ion beams
 -> existing DTL is not designed for HC applications
 -> intertank-sections and limited quadrupole gradients

- Robust beam dynamics (focusing periodicity)
 - re-design of intertank-sections
 - higher quadrupole gradients

- RF-efficiency is increased by new drift tubes geometry

- FoS-Project is funded until 2021
 -> testing of innovations in design and fabrication
 -> procurement and development is in progress

- Kick-off for series production is a successful FoS project

- No immediate „urgency“ until the existing UNILAC is in operation, a delay X can be allowed w.r.t. the overall FAIR schedule and the project’s progress
Thanks

Anna Rubin,
Xiaonan Du,
Manuel Heilmann,
Michael Kaiser,
Peter Gerhard,
Lars Groening,
Marcel Rosan,
Jens Holluba,
Stephan Teich,
Markus Romig,
Tanja Dettinger,
Frank Cours,
Norbert Bönsch,
Eberhard Merz,
Stefan Jagsch,
Wilfried Sturm,
Vaishnavi Srinivasan,
Carsten Mühle,
Bernhard Schlitt,
Gerald Schreiber,
...

Foto: Sep 2018 by T. Middelhauve/FAIR